Blame view

egs/wsj/s5/steps/conf/train_calibration.sh 4.54 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  #!/bin/bash
  # Copyright 2015, Brno University of Technology (Author: Karel Vesely). Apache 2.0.
  
  # Trains logistic regression, which calibrates the per-word confidences in 'CTM'.
  # The 'raw' confidences are obtained by Minimum Bayes Risk decoding.
  
  # The input features of logistic regression are:
  # - logit of Minumum Bayer Risk posterior
  # - log of word-length in characters
  # - log of average-depth depth of a lattice at words' position
  # - log of frames per character ratio
  # (- categorical distribution of 'lang/words.txt', DISABLED)
  
  # begin configuration section.
  cmd=
  lmwt=12
  decode_mbr=true
  word_min_count=10 # Minimum word-count for single-word category,
  normalizer=0.0025 # L2 regularization constant,
  category_text= # Alternative corpus for counting words to get word-categories (by default using 'ctm'),
  stage=0
  # end configuration section.
  
  [ -f ./path.sh ] && . ./path.sh
  . parse_options.sh || exit 1;
  
  if [ $# -ne 5 ]; then
    echo "Usage: $0 [opts] <data-dir> <lang-dir|graph-dir> <word-feats> <decode-dir> <calibration-dir>"
    echo " Options:"
    echo "    --cmd (run.pl|queue.pl...)      # specify how to run the sub-processes."
    echo "    --lmwt <int>                    # scaling for confidence extraction"
    echo "    --decode-mbr <bool>             # use Minimum Bayes Risk decoding"
    echo "    --grep-filter <str>             # remove words from calibration targets"
    exit 1;
  fi
  
  set -euo pipefail
  
  data=$1
  lang=$2 # Note: may be graph directory not lang directory, but has the necessary stuff copied.
  word_feats=$3
  latdir=$4
  dir=$5
  
  model=$latdir/../final.mdl # assume model one level up from decoding dir.
  
  for f in $data/text $lang/words.txt $word_feats $latdir/lat.1.gz; do
    [ ! -f $f ] && echo "$0: Missing file $f" && exit 1
  done
  [ -z "$cmd" ] && echo "$0: Missing --cmd '...'" && exit 1
  
  [ -d $dir/log ] || mkdir -p $dir/log
  nj=$(cat $latdir/num_jobs)
  
  # Store the setup,
  echo $lmwt >$dir/lmwt
  echo $decode_mbr >$dir/decode_mbr
  cp $word_feats $dir/word_feats
  
  # Create the ctm with raw confidences,
  # - we keep the timing relative to the utterance,
  if [ $stage -le 0 ]; then
    $cmd JOB=1:$nj $dir/log/get_ctm.JOB.log \
      lattice-scale --inv-acoustic-scale=$lmwt "ark:gunzip -c $latdir/lat.JOB.gz|" ark:- \| \
      lattice-limit-depth ark:- ark:- \| \
      lattice-push --push-strings=false ark:- ark:- \| \
      lattice-align-words-lexicon --max-expand=10.0 \
       $lang/phones/align_lexicon.int $model ark:- ark:- \| \
      lattice-to-ctm-conf --decode-mbr=$decode_mbr ark:- - \| \
      utils/int2sym.pl -f 5 $lang/words.txt \
      '>' $dir/JOB.ctm
    # Merge and clean,
    for ((n=1; n<=nj; n++)); do cat $dir/${n}.ctm; done > $dir/ctm
    rm $dir/*.ctm
  fi
  
  # Get evaluation of the 'ctm' using the 'text' reference,
  if [ $stage -le 1 ]; then
    steps/conf/convert_ctm_to_tra.py $dir/ctm - | \
    align-text --special-symbol="<eps>" ark:$data/text ark:- ark,t:- | \
    utils/scoring/wer_per_utt_details.pl --special-symbol "<eps>" \
    >$dir/align_text 
    # Append alignment to ctm,
    steps/conf/append_eval_to_ctm.py $dir/align_text $dir/ctm $dir/ctm_aligned
    # Convert words to 'ids',
    cat $dir/ctm_aligned | utils/sym2int.pl -f 5 $lang/words.txt >$dir/ctm_aligned_int
  fi
  
  # Prepare word-categories (based on wotd frequencies in 'ctm'),
  if [ -z "$category_text" ]; then
    steps/conf/convert_ctm_to_tra.py $dir/ctm - | \
    steps/conf/prepare_word_categories.py --min-count $word_min_count $lang/words.txt - $dir/word_categories
  else
    steps/conf/prepare_word_categories.py --min-count $word_min_count $lang/words.txt "$category_text" $dir/word_categories
  fi
  
  # Compute lattice-depth,
  latdepth=$dir/lattice_frame_depth.ark
  if [ $stage -le 2 ]; then
    [ -e $latdepth ] || steps/conf/lattice_depth_per_frame.sh --cmd "$cmd" $latdir $dir
  fi
  
  # Create the training data for logistic regression,
  if [ $stage -le 3 ]; then
    steps/conf/prepare_calibration_data.py \
      --conf-targets $dir/train_targets.ark --conf-feats $dir/train_feats.ark \
      --lattice-depth $latdepth $dir/ctm_aligned_int $word_feats $dir/word_categories
  fi
  
  # Train the logistic regression,
  if [ $stage -le 4 ]; then
    logistic-regression-train --binary=false --normalizer=$normalizer ark:$dir/train_feats.ark \
      ark:$dir/train_targets.ark $dir/calibration.mdl 2>$dir/log/logistic-regression-train.log
  fi
  
  # Apply calibration model to dev,
  if [ $stage -le 5 ]; then
    logistic-regression-eval --apply-log=false $dir/calibration.mdl \
      ark:$dir/train_feats.ark ark,t:- | \
      awk '{ key=$1; p_corr=$4; sub(/,.*/,"",key); gsub(/\^/," ",key); print key,p_corr }' | \
      utils/int2sym.pl -f 5 $lang/words.txt \
      >$dir/ctm_calibrated_int
  fi
  
  exit 0