Blame view
egs/wsj/s5/steps/conf/train_calibration.sh
4.54 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
#!/bin/bash # Copyright 2015, Brno University of Technology (Author: Karel Vesely). Apache 2.0. # Trains logistic regression, which calibrates the per-word confidences in 'CTM'. # The 'raw' confidences are obtained by Minimum Bayes Risk decoding. # The input features of logistic regression are: # - logit of Minumum Bayer Risk posterior # - log of word-length in characters # - log of average-depth depth of a lattice at words' position # - log of frames per character ratio # (- categorical distribution of 'lang/words.txt', DISABLED) # begin configuration section. cmd= lmwt=12 decode_mbr=true word_min_count=10 # Minimum word-count for single-word category, normalizer=0.0025 # L2 regularization constant, category_text= # Alternative corpus for counting words to get word-categories (by default using 'ctm'), stage=0 # end configuration section. [ -f ./path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# -ne 5 ]; then echo "Usage: $0 [opts] <data-dir> <lang-dir|graph-dir> <word-feats> <decode-dir> <calibration-dir>" echo " Options:" echo " --cmd (run.pl|queue.pl...) # specify how to run the sub-processes." echo " --lmwt <int> # scaling for confidence extraction" echo " --decode-mbr <bool> # use Minimum Bayes Risk decoding" echo " --grep-filter <str> # remove words from calibration targets" exit 1; fi set -euo pipefail data=$1 lang=$2 # Note: may be graph directory not lang directory, but has the necessary stuff copied. word_feats=$3 latdir=$4 dir=$5 model=$latdir/../final.mdl # assume model one level up from decoding dir. for f in $data/text $lang/words.txt $word_feats $latdir/lat.1.gz; do [ ! -f $f ] && echo "$0: Missing file $f" && exit 1 done [ -z "$cmd" ] && echo "$0: Missing --cmd '...'" && exit 1 [ -d $dir/log ] || mkdir -p $dir/log nj=$(cat $latdir/num_jobs) # Store the setup, echo $lmwt >$dir/lmwt echo $decode_mbr >$dir/decode_mbr cp $word_feats $dir/word_feats # Create the ctm with raw confidences, # - we keep the timing relative to the utterance, if [ $stage -le 0 ]; then $cmd JOB=1:$nj $dir/log/get_ctm.JOB.log \ lattice-scale --inv-acoustic-scale=$lmwt "ark:gunzip -c $latdir/lat.JOB.gz|" ark:- \| \ lattice-limit-depth ark:- ark:- \| \ lattice-push --push-strings=false ark:- ark:- \| \ lattice-align-words-lexicon --max-expand=10.0 \ $lang/phones/align_lexicon.int $model ark:- ark:- \| \ lattice-to-ctm-conf --decode-mbr=$decode_mbr ark:- - \| \ utils/int2sym.pl -f 5 $lang/words.txt \ '>' $dir/JOB.ctm # Merge and clean, for ((n=1; n<=nj; n++)); do cat $dir/${n}.ctm; done > $dir/ctm rm $dir/*.ctm fi # Get evaluation of the 'ctm' using the 'text' reference, if [ $stage -le 1 ]; then steps/conf/convert_ctm_to_tra.py $dir/ctm - | \ align-text --special-symbol="<eps>" ark:$data/text ark:- ark,t:- | \ utils/scoring/wer_per_utt_details.pl --special-symbol "<eps>" \ >$dir/align_text # Append alignment to ctm, steps/conf/append_eval_to_ctm.py $dir/align_text $dir/ctm $dir/ctm_aligned # Convert words to 'ids', cat $dir/ctm_aligned | utils/sym2int.pl -f 5 $lang/words.txt >$dir/ctm_aligned_int fi # Prepare word-categories (based on wotd frequencies in 'ctm'), if [ -z "$category_text" ]; then steps/conf/convert_ctm_to_tra.py $dir/ctm - | \ steps/conf/prepare_word_categories.py --min-count $word_min_count $lang/words.txt - $dir/word_categories else steps/conf/prepare_word_categories.py --min-count $word_min_count $lang/words.txt "$category_text" $dir/word_categories fi # Compute lattice-depth, latdepth=$dir/lattice_frame_depth.ark if [ $stage -le 2 ]; then [ -e $latdepth ] || steps/conf/lattice_depth_per_frame.sh --cmd "$cmd" $latdir $dir fi # Create the training data for logistic regression, if [ $stage -le 3 ]; then steps/conf/prepare_calibration_data.py \ --conf-targets $dir/train_targets.ark --conf-feats $dir/train_feats.ark \ --lattice-depth $latdepth $dir/ctm_aligned_int $word_feats $dir/word_categories fi # Train the logistic regression, if [ $stage -le 4 ]; then logistic-regression-train --binary=false --normalizer=$normalizer ark:$dir/train_feats.ark \ ark:$dir/train_targets.ark $dir/calibration.mdl 2>$dir/log/logistic-regression-train.log fi # Apply calibration model to dev, if [ $stage -le 5 ]; then logistic-regression-eval --apply-log=false $dir/calibration.mdl \ ark:$dir/train_feats.ark ark,t:- | \ awk '{ key=$1; p_corr=$4; sub(/,.*/,"",key); gsub(/\^/," ",key); print key,p_corr }' | \ utils/int2sym.pl -f 5 $lang/words.txt \ >$dir/ctm_calibrated_int fi exit 0 |