Blame view

egs/wsj/s5/steps/data/reverberate_data_dir.py 39.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  #!/usr/bin/env python3
  # Copyright 2016  Tom Ko
  #           2018  David Snyder
  #           2019  Phani Sankar Nidadavolu
  # Apache 2.0
  # script to generate reverberated data
  
  import argparse, shlex, glob, math, os, random, sys, warnings, copy, imp, ast
  
  data_lib = imp.load_source('dml', 'steps/data/data_dir_manipulation_lib.py')
  
  def get_args():
      # we add required arguments as named arguments for readability
      parser = argparse.ArgumentParser(description="Reverberate the data directory with an option "
                                                   "to add isotropic and point source noises. "
                                                   "Usage: reverberate_data_dir.py [options...] <in-data-dir> <out-data-dir> "
                                                   "E.g. reverberate_data_dir.py --rir-set-parameters rir_list "
                                                   "--foreground-snrs 20:10:15:5:0 --background-snrs 20:10:15:5:0 "
                                                   "--noise-list-file noise_list --speech-rvb-probability 1 --num-replications 2 "
                                                   "--random-seed 1 data/train data/train_rvb",
                                       formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  
      parser.add_argument("--rir-set-parameters", type=str, action='append', required = True, dest = "rir_set_para_array",
                          help="Specifies the parameters of an RIR set. "
                          "Supports the specification of  mixture_weight and rir_list_file_name. The mixture weight is optional. "
                          "The default mixture weight is the probability mass remaining after adding the mixture weights "
                          "of all the RIR lists, uniformly divided among the RIR lists without mixture weights. "
                          "E.g. --rir-set-parameters '0.3, rir_list' or 'rir_list' "
                          "the format of the RIR list file is "
                          "--rir-id <string,required> --room-id <string,required> "
                          "--receiver-position-id <string,optional> --source-position-id <string,optional> "
                          "--rt-60 <float,optional> --drr <float, optional> location <rspecifier> "
                          "E.g. --rir-id 00001 --room-id 001 --receiver-position-id 001 --source-position-id 00001 "
                          "--rt60 0.58 --drr -4.885 data/impulses/Room001-00001.wav")
      parser.add_argument("--noise-set-parameters", type=str, action='append', default = None, dest = "noise_set_para_array",
                          help="Specifies the parameters of an noise set. "
                          "Supports the specification of mixture_weight and noise_list_file_name. The mixture weight is optional. "
                          "The default mixture weight is the probability mass remaining after adding the mixture weights "
                          "of all the noise lists, uniformly divided among the noise lists without mixture weights. "
                          "E.g. --noise-set-parameters '0.3, noise_list' or 'noise_list' "
                          "the format of the noise list file is "
                          "--noise-id <string,required> --noise-type <choices = {isotropic, point source},required> "
                          "--bg-fg-type <choices = {background, foreground}, default=background> "
                          "--room-linkage <str, specifies the room associated with the noise file. Required if isotropic> "
                          "location <rspecifier> "
                          "E.g. --noise-id 001 --noise-type isotropic --rir-id 00019 iso_noise.wav")
      parser.add_argument("--num-replications", type=int, dest = "num_replicas", default = 1,
                          help="Number of replicate to generated for the data")
      parser.add_argument('--foreground-snrs', type=str, dest = "foreground_snr_string", default = '20:10:0', help='When foreground noises are being added the script will iterate through these SNRs.')
      parser.add_argument('--background-snrs', type=str, dest = "background_snr_string", default = '20:10:0', help='When background noises are being added the script will iterate through these SNRs.')
      parser.add_argument('--prefix', type=str, default = None, help='This prefix will modified for each reverberated copy, by adding additional affixes.')
      parser.add_argument("--speech-rvb-probability", type=float, default = 1.0,
                          help="Probability of reverberating a speech signal, e.g. 0 <= p <= 1")
      parser.add_argument("--pointsource-noise-addition-probability", type=float, default = 1.0,
                          help="Probability of adding point-source noises, e.g. 0 <= p <= 1")
      parser.add_argument("--isotropic-noise-addition-probability", type=float, default = 1.0,
                          help="Probability of adding isotropic noises, e.g. 0 <= p <= 1")
      parser.add_argument("--rir-smoothing-weight", type=float, default = 0.3,
                          help="Smoothing weight for the RIR probabilties, e.g. 0 <= p <= 1. If p = 0, no smoothing will be done. "
                          "The RIR distribution will be mixed with a uniform distribution according to the smoothing weight")
      parser.add_argument("--noise-smoothing-weight", type=float, default = 0.3,
                          help="Smoothing weight for the noise probabilties, e.g. 0 <= p <= 1. If p = 0, no smoothing will be done. "
                          "The noise distribution will be mixed with a uniform distribution according to the smoothing weight")
      parser.add_argument("--max-noises-per-minute", type=int, default = 2,
                          help="This controls the maximum number of point-source noises that could be added to a recording according to its duration")
      parser.add_argument('--random-seed', type=int, default=0, help='seed to be used in the randomization of impulses and noises')
      parser.add_argument("--shift-output", type=str, help="If true, the reverberated waveform will be shifted by the amount of the peak position of the RIR",
                           choices=['true', 'false'], default = "true")
      parser.add_argument('--source-sampling-rate', type=int, default=None,
                          help="Sampling rate of the source data. If a positive integer is specified with this option, "
                          "the RIRs/noises will be resampled to the rate of the source data.")
      parser.add_argument("--include-original-data", type=str, help="If true, the output data includes one copy of the original data",
                           choices=['true', 'false'], default = "false")
      parser.add_argument("input_dir",
                          help="Input data directory")
      parser.add_argument("output_dir",
                          help="Output data directory")
  
      print(' '.join(sys.argv))
  
      args = parser.parse_args()
      args = check_args(args)
  
      return args
  
  def check_args(args):
      if args.prefix is None:
          if args.num_replicas > 1 or args.include_original_data == "true":
              args.prefix = "rvb"
              warnings.warn("--prefix is set to 'rvb' as more than one copy of data is generated")
  
      if not args.num_replicas > 0:
          raise Exception("--num-replications cannot be non-positive")
  
      if args.speech_rvb_probability < 0 or args.speech_rvb_probability > 1:
          raise Exception("--speech-rvb-probability must be between 0 and 1")
  
      if args.pointsource_noise_addition_probability < 0 or args.pointsource_noise_addition_probability > 1:
          raise Exception("--pointsource-noise-addition-probability must be between 0 and 1")
  
      if args.isotropic_noise_addition_probability < 0 or args.isotropic_noise_addition_probability > 1:
          raise Exception("--isotropic-noise-addition-probability must be between 0 and 1")
  
      if args.rir_smoothing_weight < 0 or args.rir_smoothing_weight > 1:
          raise Exception("--rir-smoothing-weight must be between 0 and 1")
  
      if args.noise_smoothing_weight < 0 or args.noise_smoothing_weight > 1:
          raise Exception("--noise-smoothing-weight must be between 0 and 1")
  
      if args.max_noises_per_minute < 0:
          raise Exception("--max-noises-per-minute cannot be negative")
  
      if args.source_sampling_rate is not None and args.source_sampling_rate <= 0:
          raise Exception("--source-sampling-rate cannot be non-positive")
  
      return args
  
  
  class list_cyclic_iterator(object):
      def __init__(self, list):
          self.list_index = 0
          self.list = list
          random.shuffle(self.list)
  
      def __next__(self):
          item = self.list[self.list_index]
          self.list_index = (self.list_index + 1) % len(self.list)
          return item
  
      next = __next__  # for Python 2
  
  def pick_item_with_probability(x):
      """ This functions picks an item from the collection according to the associated
          probability distribution. The probability estimate of each item in the collection
          is stored in the "probability" field of the particular item. x : a
          collection (list or dictionary) where the values contain a field called probability
      """
      if isinstance(x, dict):
          plist = list(set(x.values()))
      else:
          plist = x
      total_p = sum(item.probability for item in plist)
      p = random.uniform(0, total_p)
      accumulate_p = 0
      for item in plist:
          if accumulate_p + item.probability >= p:
              return item
          accumulate_p += item.probability
      assert False, "Shouldn't get here as the accumulated probability should always equal to 1"
  
  
  def parse_file_to_dict(file, assert2fields = False, value_processor = None):
      """ This function parses a file and pack the data into a dictionary
          It is useful for parsing file like wav.scp, utt2spk, text...etc
      """
      if value_processor is None:
          value_processor = lambda x: x[0]
      dict = {}
      for line in open(file, 'r', encoding='utf-8'):
          parts = line.split()
          if assert2fields:
              assert(len(parts) == 2)
  
          dict[parts[0]] = value_processor(parts[1:])
      return dict
  
  def write_dict_to_file(dict, file_name):
      """ This function creates a file and write the content of a dictionary into it
      """
      file = open(file_name, 'w', encoding='utf-8')
      keys = sorted(dict.keys())
      for key in keys:
          value = dict[key]
          if type(value) in [list, tuple] :
              if type(value) is tuple:
                  value = list(value)
              value = sorted(value)
              value = ' '.join(str(value))
          file.write('{0} {1}
  '.format(key, value))
      file.close()
  
  
  def create_corrupted_utt2uniq(input_dir, output_dir, num_replicas, include_original, prefix):
      """This function creates the utt2uniq file from the utterance id in utt2spk file
      """
      corrupted_utt2uniq = {}
      # Parse the utt2spk to get the utterance id
      utt2spk = parse_file_to_dict(input_dir + "/utt2spk", value_processor = lambda x: " ".join(x))
      keys = sorted(utt2spk.keys())
      if include_original:
          start_index = 0
      else:
          start_index = 1
  
      for i in range(start_index, num_replicas+1):
          for utt_id in keys:
              new_utt_id = get_new_id(utt_id, prefix, i)
              corrupted_utt2uniq[new_utt_id] = utt_id
  
      write_dict_to_file(corrupted_utt2uniq, output_dir + "/utt2uniq")
  
  
  def add_point_source_noise(noise_addition_descriptor,  # descriptor to store the information of the noise added
                          room,  # the room selected
                          pointsource_noise_list, # the point source noise list
                          pointsource_noise_addition_probability, # Probability of adding point-source noises
                          foreground_snrs, # the SNR for adding the foreground noises
                          background_snrs, # the SNR for adding the background noises
                          speech_dur,  # duration of the recording
                          max_noises_recording  # Maximum number of point-source noises that can be added
                          ):
      if len(pointsource_noise_list) > 0 and random.random() < pointsource_noise_addition_probability and max_noises_recording >= 1:
          for k in range(random.randint(1, max_noises_recording)):
              # pick the RIR to reverberate the point-source noise
              noise = pick_item_with_probability(pointsource_noise_list)
              noise_rir = pick_item_with_probability(room.rir_list)
              # If it is a background noise, the noise will be extended and be added to the whole speech
              # if it is a foreground noise, the noise will not extended and be added at a random time of the speech
              if noise.bg_fg_type == "background":
                  noise_rvb_command = """wav-reverberate --impulse-response="{0}" --duration={1}""".format(noise_rir.rir_rspecifier, speech_dur)
                  noise_addition_descriptor['start_times'].append(0)
                  noise_addition_descriptor['snrs'].append(next(background_snrs))
              else:
                  noise_rvb_command = """wav-reverberate --impulse-response="{0}" """.format(noise_rir.rir_rspecifier)
                  noise_addition_descriptor['start_times'].append(round(random.random() * speech_dur, 2))
                  noise_addition_descriptor['snrs'].append(next(foreground_snrs))
  
              # check if the rspecifier is a pipe or not
              if len(noise.noise_rspecifier.split()) == 1:
                  noise_addition_descriptor['noise_io'].append("{1} {0} - |".format(noise.noise_rspecifier, noise_rvb_command))
              else:
                  noise_addition_descriptor['noise_io'].append("{0} {1} - - |".format(noise.noise_rspecifier, noise_rvb_command))
  
      return noise_addition_descriptor
  
  
  def generate_reverberation_opts(room_dict,  # the room dictionary, please refer to make_room_dict() for the format
                                pointsource_noise_list, # the point source noise list
                                iso_noise_dict, # the isotropic noise dictionary
                                foreground_snrs, # the SNR for adding the foreground noises
                                background_snrs, # the SNR for adding the background noises
                                speech_rvb_probability, # Probability of reverberating a speech signal
                                isotropic_noise_addition_probability, # Probability of adding isotropic noises
                                pointsource_noise_addition_probability, # Probability of adding point-source noises
                                speech_dur,  # duration of the recording
                                max_noises_recording  # Maximum number of point-source noises that can be added
                                ):
      """ This function randomly decides whether to reverberate, and sample a RIR if it does
          It also decides whether to add the appropriate noises
          This function return the string of options to the binary wav-reverberate
      """
      reverberate_opts = ""
      noise_addition_descriptor = {'noise_io': [],
                                   'start_times': [],
                                   'snrs': []}
      # Randomly select the room
      # Here the room probability is a sum of the probabilities of the RIRs recorded in the room.
      room = pick_item_with_probability(room_dict)
      # Randomly select the RIR in the room
      speech_rir = pick_item_with_probability(room.rir_list)
      if random.random() < speech_rvb_probability:
          # pick the RIR to reverberate the speech
          reverberate_opts += """--impulse-response="{0}" """.format(speech_rir.rir_rspecifier)
  
      rir_iso_noise_list = []
      if speech_rir.room_id in iso_noise_dict:
          rir_iso_noise_list = iso_noise_dict[speech_rir.room_id]
      # Add the corresponding isotropic noise associated with the selected RIR
      if len(rir_iso_noise_list) > 0 and random.random() < isotropic_noise_addition_probability:
          isotropic_noise = pick_item_with_probability(rir_iso_noise_list)
          # extend the isotropic noise to the length of the speech waveform
          # check if the rspecifier is a pipe or not
          if len(isotropic_noise.noise_rspecifier.split()) == 1:
              noise_addition_descriptor['noise_io'].append("wav-reverberate --duration={1} {0} - |".format(isotropic_noise.noise_rspecifier, speech_dur))
          else:
              noise_addition_descriptor['noise_io'].append("{0} wav-reverberate --duration={1} - - |".format(isotropic_noise.noise_rspecifier, speech_dur))
          noise_addition_descriptor['start_times'].append(0)
          noise_addition_descriptor['snrs'].append(next(background_snrs))
  
      noise_addition_descriptor = add_point_source_noise(noise_addition_descriptor,  # descriptor to store the information of the noise added
                                                      room,  # the room selected
                                                      pointsource_noise_list, # the point source noise list
                                                      pointsource_noise_addition_probability, # Probability of adding point-source noises
                                                      foreground_snrs, # the SNR for adding the foreground noises
                                                      background_snrs, # the SNR for adding the background noises
                                                      speech_dur,  # duration of the recording
                                                      max_noises_recording  # Maximum number of point-source noises that can be added
                                                      )
  
      assert len(noise_addition_descriptor['noise_io']) == len(noise_addition_descriptor['start_times'])
      assert len(noise_addition_descriptor['noise_io']) == len(noise_addition_descriptor['snrs'])
      if len(noise_addition_descriptor['noise_io']) > 0:
          reverberate_opts += "--additive-signals='{0}' ".format(','.join(noise_addition_descriptor['noise_io']))
          reverberate_opts += "--start-times='{0}' ".format(','.join([str(x) for x in noise_addition_descriptor['start_times']]))
          reverberate_opts += "--snrs='{0}' ".format(','.join([str(x) for x in noise_addition_descriptor['snrs']]))
  
      return reverberate_opts
  
  def get_new_id(id, prefix=None, copy=0):
      """ This function generates a new id from the input id
          This is needed when we have to create multiple copies of the original data
          E.g. get_new_id("swb0035", prefix="rvb", copy=1) returns a string "rvb1-swb0035"
      """
      if prefix is not None:
          new_id = prefix + str(copy) + "-" + id
      else:
          new_id = id
  
      return new_id
  
  
  def generate_reverberated_wav_scp(wav_scp,  # a dictionary whose values are the Kaldi-IO strings of the speech recordings
                                 durations, # a dictionary whose values are the duration (in sec) of the speech recordings
                                 output_dir, # output directory to write the corrupted wav.scp
                                 room_dict,  # the room dictionary, please refer to make_room_dict() for the format
                                 pointsource_noise_list, # the point source noise list
                                 iso_noise_dict, # the isotropic noise dictionary
                                 foreground_snr_array, # the SNR for adding the foreground noises
                                 background_snr_array, # the SNR for adding the background noises
                                 num_replicas, # Number of replicate to generated for the data
                                 include_original, # include a copy of the original data
                                 prefix, # prefix for the id of the corrupted utterances
                                 speech_rvb_probability, # Probability of reverberating a speech signal
                                 shift_output, # option whether to shift the output waveform
                                 isotropic_noise_addition_probability, # Probability of adding isotropic noises
                                 pointsource_noise_addition_probability, # Probability of adding point-source noises
                                 max_noises_per_minute # maximum number of point-source noises that can be added to a recording according to its duration
                                 ):
      """ This is the main function to generate pipeline command for the corruption
          The generic command of wav-reverberate will be like:
          wav-reverberate --duration=t --impulse-response=rir.wav
          --additive-signals='noise1.wav,noise2.wav' --snrs='snr1,snr2' --start-times='s1,s2' input.wav output.wav
      """
      foreground_snrs = list_cyclic_iterator(foreground_snr_array)
      background_snrs = list_cyclic_iterator(background_snr_array)
      corrupted_wav_scp = {}
      keys = sorted(wav_scp.keys())
      if include_original:
          start_index = 0
      else:
          start_index = 1
  
      for i in range(start_index, num_replicas+1):
          for recording_id in keys:
              wav_original_pipe = wav_scp[recording_id]
              # check if it is really a pipe
              if len(wav_original_pipe.split()) == 1:
                  wav_original_pipe = "cat {0} |".format(wav_original_pipe)
              speech_dur = durations[recording_id]
              max_noises_recording = math.floor(max_noises_per_minute * speech_dur / 60)
  
              reverberate_opts = generate_reverberation_opts(room_dict,  # the room dictionary, please refer to make_room_dict() for the format
                                                           pointsource_noise_list, # the point source noise list
                                                           iso_noise_dict, # the isotropic noise dictionary
                                                           foreground_snrs, # the SNR for adding the foreground noises
                                                           background_snrs, # the SNR for adding the background noises
                                                           speech_rvb_probability, # Probability of reverberating a speech signal
                                                           isotropic_noise_addition_probability, # Probability of adding isotropic noises
                                                           pointsource_noise_addition_probability, # Probability of adding point-source noises
                                                           speech_dur,  # duration of the recording
                                                           max_noises_recording  # Maximum number of point-source noises that can be added
                                                           )
  
              # prefix using index 0 is reserved for original data e.g. rvb0_swb0035 corresponds to the swb0035 recording in original data
              if reverberate_opts == "" or i == 0:
                  wav_corrupted_pipe = "{0}".format(wav_original_pipe)
              else:
                  wav_corrupted_pipe = "{0} wav-reverberate --shift-output={1} {2} - - |".format(wav_original_pipe, shift_output, reverberate_opts)
  
              new_recording_id = get_new_id(recording_id, prefix, i)
              corrupted_wav_scp[new_recording_id] = wav_corrupted_pipe
  
      write_dict_to_file(corrupted_wav_scp, output_dir + "/wav.scp")
  
  
  def add_prefix_to_fields(input_file, output_file, num_replicas, include_original, prefix, field = [0]):
      """ This function replicate the entries in files like segments, utt2spk, text
      """
      list = [x.strip() for x in open(input_file, encoding='utf-8')]
      f = open(output_file, "w" ,encoding='utf-8')
      if include_original:
          start_index = 0
      else:
          start_index = 1
  
      for i in range(start_index, num_replicas+1):
          for line in list:
              if len(line) > 0 and line[0] != ';':
                  split1 = line.split()
                  for j in field:
                      split1[j] = get_new_id(split1[j], prefix, i)
                  print(" ".join(split1), file=f)
              else:
                  print(line, file=f)
      f.close()
  
  
  def create_reverberated_copy(input_dir,
                             output_dir,
                             room_dict,  # the room dictionary, please refer to make_room_dict() for the format
                             pointsource_noise_list, # the point source noise list
                             iso_noise_dict, # the isotropic noise dictionary
                             foreground_snr_string, # the SNR for adding the foreground noises
                             background_snr_string, # the SNR for adding the background noises
                             num_replicas, # Number of replicate to generated for the data
                             include_original, # include a copy of the original data
                             prefix, # prefix for the id of the corrupted utterances
                             speech_rvb_probability, # Probability of reverberating a speech signal
                             shift_output, # option whether to shift the output waveform
                             isotropic_noise_addition_probability, # Probability of adding isotropic noises
                             pointsource_noise_addition_probability, # Probability of adding point-source noises
                             max_noises_per_minute  # maximum number of point-source noises that can be added to a recording according to its duration
                             ):
      """ This function creates multiple copies of the necessary files,
          e.g. utt2spk, wav.scp ...
      """
      if not os.path.exists(output_dir):
          os.makedirs(output_dir)
      wav_scp = parse_file_to_dict(input_dir + "/wav.scp", value_processor = lambda x: " ".join(x))
      if not os.path.isfile(input_dir + "/reco2dur"):
          print("Getting the duration of the recordings...");
          data_lib.RunKaldiCommand("utils/data/get_reco2dur.sh {}".format(input_dir))
      durations = parse_file_to_dict(input_dir + "/reco2dur", value_processor = lambda x: float(x[0]))
      foreground_snr_array = [float(x) for x in foreground_snr_string.split(':')]
      background_snr_array = [float(x) for x in background_snr_string.split(':')]
  
      generate_reverberated_wav_scp(wav_scp, durations, output_dir, room_dict, pointsource_noise_list, iso_noise_dict,
                 foreground_snr_array, background_snr_array, num_replicas, include_original, prefix,
                 speech_rvb_probability, shift_output, isotropic_noise_addition_probability,
                 pointsource_noise_addition_probability, max_noises_per_minute)
  
      add_prefix_to_fields(input_dir + "/utt2spk", output_dir + "/utt2spk", num_replicas, include_original, prefix, field = [0,1])
      data_lib.RunKaldiCommand("utils/utt2spk_to_spk2utt.pl <{output_dir}/utt2spk >{output_dir}/spk2utt"
                      .format(output_dir = output_dir))
  
      if os.path.isfile(input_dir + "/utt2uniq"):
          add_prefix_to_fields(input_dir + "/utt2uniq", output_dir + "/utt2uniq", num_replicas, include_original, prefix, field =[0])
      else:
          # Create the utt2uniq file
          create_corrupted_utt2uniq(input_dir, output_dir, num_replicas, include_original, prefix)
  
      if os.path.isfile(input_dir + "/text"):
          add_prefix_to_fields(input_dir + "/text", output_dir + "/text", num_replicas, include_original, prefix, field =[0])
      if os.path.isfile(input_dir + "/segments"):
          add_prefix_to_fields(input_dir + "/segments", output_dir + "/segments", num_replicas, include_original, prefix, field = [0,1])
      if os.path.isfile(input_dir + "/reco2file_and_channel"):
          add_prefix_to_fields(input_dir + "/reco2file_and_channel", output_dir + "/reco2file_and_channel", num_replicas, include_original, prefix, field = [0,1])
  
      data_lib.RunKaldiCommand("utils/validate_data_dir.sh --no-feats --no-text {output_dir}"
                      .format(output_dir = output_dir))
  
  
  def smooth_probability_distribution(set_list, smoothing_weight=0.0, target_sum=1.0):
      """ This function smooths the probability distribution in the list
      """
      if len(list(set_list)) > 0:
        num_unspecified = 0
        accumulated_prob = 0
        for item in set_list:
            if item.probability is None:
                num_unspecified += 1
            else:
                accumulated_prob += item.probability
  
        # Compute the probability for the items without specifying their probability
        uniform_probability = 0
        if num_unspecified > 0 and accumulated_prob < 1:
            uniform_probability = (1 - accumulated_prob) / float(num_unspecified)
        elif num_unspecified > 0 and accumulate_prob >= 1:
            warnings.warn("The sum of probabilities specified by user is larger than or equal to 1. "
                          "The items without probabilities specified will be given zero to their probabilities.")
  
        for item in set_list:
            if item.probability is None:
                item.probability = uniform_probability
            else:
                # smooth the probability
                item.probability = (1 - smoothing_weight) * item.probability + smoothing_weight * uniform_probability
  
        # Normalize the probability
        sum_p = sum(item.probability for item in set_list)
        for item in set_list:
            item.probability = item.probability / sum_p * target_sum
  
      return set_list
  
  
  def parse_set_parameter_strings(set_para_array):
      """ This function parse the array of rir set parameter strings.
          It will assign probabilities to those rir sets which don't have a probability
          It will also check the existence of the rir list files.
      """
      set_list = []
      for set_para in set_para_array:
          set = lambda: None
          setattr(set, "filename", None)
          setattr(set, "probability", None)
          parts = set_para.split(',')
          if len(parts) == 2:
              set.probability = float(parts[0])
              set.filename = parts[1].strip()
          else:
              set.filename = parts[0].strip()
          if not os.path.isfile(set.filename):
              raise Exception(set.filename + " not found")
          set_list.append(set)
  
      return smooth_probability_distribution(set_list)
  
  
  def parse_rir_list(rir_set_para_array, smoothing_weight, sampling_rate = None):
      """ This function creates the RIR list
          Each rir object in the list contains the following attributes:
          rir_id, room_id, receiver_position_id, source_position_id, rt60, drr, probability
          Please refer to the help messages in the parser for the meaning of these attributes
      """
      rir_parser = argparse.ArgumentParser()
      rir_parser.add_argument('--rir-id', type=str, required=True, help='This id is unique for each RIR and the noise may associate with a particular RIR by refering to this id')
      rir_parser.add_argument('--room-id', type=str, required=True, help='This is the room that where the RIR is generated')
      rir_parser.add_argument('--receiver-position-id', type=str, default=None, help='receiver position id')
      rir_parser.add_argument('--source-position-id', type=str, default=None, help='source position id')
      rir_parser.add_argument('--rt60', type=float, default=None, help='RT60 is the time required for reflections of a direct sound to decay 60 dB.')
      rir_parser.add_argument('--drr', type=float, default=None, help='Direct-to-reverberant-ratio of the impulse response.')
      rir_parser.add_argument('--cte', type=float, default=None, help='Early-to-late index of the impulse response.')
      rir_parser.add_argument('--probability', type=float, default=None, help='probability of the impulse response.')
      rir_parser.add_argument('rir_rspecifier', type=str, help="""rir rspecifier, it can be either a filename or a piped command.
                              E.g. data/impulses/Room001-00001.wav or "sox data/impulses/Room001-00001.wav -t wav - |" """)
  
      set_list = parse_set_parameter_strings(rir_set_para_array)
  
      rir_list = []
      for rir_set in set_list:
          current_rir_list = [rir_parser.parse_args(shlex.split(x.strip())) for x in open(rir_set.filename)]
          for rir in current_rir_list:
              if sampling_rate is not None:
                  # check if the rspecifier is a pipe or not
                  if len(rir.rir_rspecifier.split()) == 1:
                      rir.rir_rspecifier = "sox {0} -r {1} -t wav - |".format(rir.rir_rspecifier, sampling_rate)
                  else:
                      rir.rir_rspecifier = "{0} sox -t wav - -r {1} -t wav - |".format(rir.rir_rspecifier, sampling_rate)
  
          rir_list += smooth_probability_distribution(current_rir_list, smoothing_weight, rir_set.probability)
  
      return rir_list
  
  
  def almost_equal(value_1, value_2, accuracy = 10**-8):
      """ This function checks if the inputs are approximately equal assuming they are floats.
      """
      return abs(value_1 - value_2) < accuracy
  
  
  def make_room_dict(rir_list):
      """ This function converts a list of RIRs into a dictionary of RIRs indexed by the room-id.
          Its values are objects with two attributes: a local RIR list
          and the probability of the corresponding room
          Please look at the comments at parse_rir_list() for the attributes that a RIR object contains
      """
      room_dict = {}
      for rir in rir_list:
          if rir.room_id not in room_dict:
              # add new room
              room_dict[rir.room_id] = lambda: None
              setattr(room_dict[rir.room_id], "rir_list", [])
              setattr(room_dict[rir.room_id], "probability", 0)
          room_dict[rir.room_id].rir_list.append(rir)
  
      # the probability of the room is the sum of probabilities of its RIR
      for key in room_dict.keys():
          room_dict[key].probability = sum(rir.probability for rir in room_dict[key].rir_list)
  
      assert almost_equal(sum(room_dict[key].probability for key in room_dict.keys()), 1.0)
  
      return room_dict
  
  def parse_noise_list(noise_set_para_array, smoothing_weight, sampling_rate = None):
      """ This function creates the point-source noise list
           and the isotropic noise dictionary from the noise information file
           The isotropic noise dictionary is indexed by the room
           and its value is the corrresponding isotropic noise list
           Each noise object in the list contains the following attributes:
           noise_id, noise_type, bg_fg_type, room_linkage, probability, noise_rspecifier
           Please refer to the help messages in the parser for the meaning of these attributes
      """
      noise_parser = argparse.ArgumentParser()
      noise_parser.add_argument('--noise-id', type=str, required=True, help='noise id')
      noise_parser.add_argument('--noise-type', type=str, required=True, help='the type of noise; i.e. isotropic or point-source', choices = ["isotropic", "point-source"])
      noise_parser.add_argument('--bg-fg-type', type=str, default="background", help='background or foreground noise, for background noises, '
                                'they will be extended before addition to cover the whole speech; for foreground noise, they will be kept '
                                'to their original duration and added at a random point of the speech.', choices = ["background", "foreground"])
      noise_parser.add_argument('--room-linkage', type=str, default=None, help='required if isotropic, should not be specified if point-source.')
      noise_parser.add_argument('--probability', type=float, default=None, help='probability of the noise.')
      noise_parser.add_argument('noise_rspecifier', type=str, help="""noise rspecifier, it can be either a filename or a piped command.
                                E.g. type5_noise_cirline_ofc_ambient1.wav or "sox type5_noise_cirline_ofc_ambient1.wav -t wav - |" """)
  
      set_list = parse_set_parameter_strings(noise_set_para_array)
  
      pointsource_noise_list = []
      iso_noise_dict = {}
      for noise_set in set_list:
          current_noise_list = [noise_parser.parse_args(shlex.split(x.strip())) for x in open(noise_set.filename)]
          current_pointsource_noise_list = []
          for noise in current_noise_list:
              if sampling_rate is not None:
                  # check if the rspecifier is a pipe or not
                  if len(noise.noise_rspecifier.split()) == 1:
                      noise.noise_rspecifier = "sox {0} -r {1} -t wav - |".format(noise.noise_rspecifier, sampling_rate)
                  else:
                      noise.noise_rspecifier = "{0} sox -t wav - -r {1} -t wav - |".format(noise.noise_rspecifier, sampling_rate)
  
              if noise.noise_type == "isotropic":
                  if noise.room_linkage is None:
                      raise Exception("--room-linkage must be specified if --noise-type is isotropic")
                  else:
                      if noise.room_linkage not in iso_noise_dict:
                          iso_noise_dict[noise.room_linkage] = []
                      iso_noise_dict[noise.room_linkage].append(noise)
              else:
                  current_pointsource_noise_list.append(noise)
  
          pointsource_noise_list += smooth_probability_distribution(current_pointsource_noise_list, smoothing_weight, noise_set.probability)
  
      # ensure the point-source noise probabilities sum to 1
      pointsource_noise_list = smooth_probability_distribution(pointsource_noise_list, smoothing_weight, 1.0)
      if len(pointsource_noise_list) > 0:
          assert almost_equal(sum(noise.probability for noise in pointsource_noise_list), 1.0)
  
      # ensure the isotropic noise source probabilities for a given room sum to 1
      for key in iso_noise_dict.keys():
          iso_noise_dict[key] = smooth_probability_distribution(iso_noise_dict[key])
          assert almost_equal(sum(noise.probability for noise in iso_noise_dict[key]), 1.0)
  
      return (pointsource_noise_list, iso_noise_dict)
  
  
  def main():
      args = get_args()
  
      random.seed(args.random_seed)
      rir_list = parse_rir_list(args.rir_set_para_array, args.rir_smoothing_weight, args.source_sampling_rate)
      print("Number of RIRs is {0}".format(len(rir_list)))
      pointsource_noise_list = []
      iso_noise_dict = {}
      if args.noise_set_para_array is not None:
          pointsource_noise_list, iso_noise_dict = parse_noise_list(args.noise_set_para_array,
                                                                  args.noise_smoothing_weight,
                                                                  args.source_sampling_rate)
          print("Number of point-source noises is {0}".format(len(pointsource_noise_list)))
          print("Number of isotropic noises is {0}".format(sum(len(iso_noise_dict[key]) for key in iso_noise_dict.keys())))
      room_dict = make_room_dict(rir_list)
  
      if args.include_original_data == "true":
          include_original = True
      else:
          include_original = False
      create_reverberated_copy(input_dir = args.input_dir,
                             output_dir = args.output_dir,
                             room_dict = room_dict,
                             pointsource_noise_list = pointsource_noise_list,
                             iso_noise_dict = iso_noise_dict,
                             foreground_snr_string = args.foreground_snr_string,
                             background_snr_string = args.background_snr_string,
                             num_replicas = args.num_replicas,
                             include_original = include_original,
                             prefix = args.prefix,
                             speech_rvb_probability = args.speech_rvb_probability,
                             shift_output = args.shift_output,
                             isotropic_noise_addition_probability = args.isotropic_noise_addition_probability,
                             pointsource_noise_addition_probability = args.pointsource_noise_addition_probability,
                             max_noises_per_minute = args.max_noises_per_minute)
  
  
      data_lib.RunKaldiCommand("utils/validate_data_dir.sh --no-feats --no-text {output_dir}"
                      .format(output_dir = args.output_dir))
  
  if __name__ == "__main__":
      main()