Blame view

egs/wsj/s5/steps/decode_fmllr_extra.sh 11.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  #!/bin/bash
  
  # Copyright 2012  Johns Hopkins University (Author: Daniel Povey)
  
  # Decoding script that does fMLLR.  This can be on top of delta+delta-delta, or
  # LDA+MLLT features.
  # This script does an extra pass of lattice generation over and above what the original
  # script did-- it's for robustness in the case where your original cepstral mean
  # normalization was way off.
  # We also added a new option --distribute=true (by default) to 
  # weight-silence-post.  This weights the silence frames in a different way,
  # weighting all posteriors on the frame rather than just the silence ones, which
  # removes a particular kind of bias that the old approach suffered from.
  
  # There are 3 models involved potentially in this script,
  # and for a standard, speaker-independent system they will all be the same.
  # The "alignment model" is for the 1st-pass decoding and to get the 
  # Gaussian-level alignments for the "adaptation model" the first time we
  # do fMLLR.  The "adaptation model" is used to estimate fMLLR transforms
  # and to generate state-level lattices.  The lattices are then rescored
  # with the "final model".
  #
  # The following table explains where we get these 3 models from.
  # Note: $srcdir is one level up from the decoding directory.
  #
  #   Model              Default source:                 
  #
  #  "alignment model"   $srcdir/final.alimdl              --alignment-model <model>
  #                     (or $srcdir/final.mdl if alimdl absent)
  #  "adaptation model"  $srcdir/final.mdl                 --adapt-model <model>
  #  "final model"       $srcdir/final.mdl                 --final-model <model>
  
  
  # Begin configuration section
  first_beam=10.0 # Beam used in initial, speaker-indep. pass
  first_max_active=2000 # max-active used in first two passes.
  first_lattice_beam=4.0 # lattice pruning beam for si decode and first-pass fMLLR decode.
                  # the different spelling from lattice_beam is unfortunate; these scripts
                  # have a history.
  alignment_model=
  adapt_model=
  final_model=
  cleanup=true
  stage=0
  acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in 
                # lattice generation.
  max_active=7000
  max_mem=50000000
  beam=13.0
  lattice_beam=6.0
  nj=4
  silence_weight=0.01
  distribute=true # option to weight-silence-post.
  cmd=run.pl
  si_dir=
  fmllr_update_type=full
  skip_scoring=false
  num_threads=1 # if >1, will use gmm-latgen-faster-parallel
  parallel_opts=  # ignored now.
  scoring_opts=
  
  # End configuration section
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f ./path.sh ] && . ./path.sh; # source the path.
  . parse_options.sh || exit 1;
  
  if [ $# != 3 ]; then
     echo "Usage: steps/decode_fmllr.sh [options] <graph-dir> <data-dir> <decode-dir>"
     echo " e.g.: steps/decode_fmllr.sh exp/tri2b/graph_tgpr data/test_dev93 exp/tri2b/decode_dev93_tgpr"
     echo "main options (for others, see top of script file)"
     echo "  --config <config-file>                   # config containing options"
     echo "  --nj <nj>                                # number of parallel jobs"
     echo "  --cmd <cmd>                              # Command to run in parallel with"
     echo "  --adapt-model <adapt-mdl>                # Model to compute transforms with"
     echo "  --alignment-model <ali-mdl>              # Model to get Gaussian-level alignments for"
     echo "                                           # 1st pass of transform computation."
     echo "  --final-model <finald-mdl>               # Model to finally decode with"
     echo "  --si-dir <speaker-indep-decoding-dir>    # use this to skip 1st pass of decoding"
     echo "                                           # Caution-- must be with same tree"
     echo "  --acwt <acoustic-weight>                 # default 0.08333 ... used to get posteriors"
     echo "  --num-threads <n>                        # number of threads to use, default 1."
     echo "  --scoring-opts <opts>                    # options to local/score.sh"
     exit 1;
  fi
  
  
  graphdir=$1
  data=$2
  dir=`echo $3 | sed 's:/$::g'` # remove any trailing slash.
  
  srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
  sdata=$data/split$nj;
  
  thread_string=
  [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads"
  
  mkdir -p $dir/log
  [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
  echo $nj > $dir/num_jobs
  splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options.
  cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
  delta_opts=`cat $srcdir/delta_opts 2>/dev/null`
  
  silphonelist=`cat $graphdir/phones/silence.csl` || exit 1;
  
  # Some checks.  Note: we don't need $srcdir/tree but we expect
  # it should exist, given the current structure of the scripts.
  for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/tree; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  ## Work out name of alignment model. ##
  if [ -z "$alignment_model" ]; then
    if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl;
    else alignment_model=$srcdir/final.mdl; fi
  fi
  [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1;
  ##
  
  ## Do the speaker-independent decoding, if --si-dir option not present. ##
  if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass.
    si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si".
    if [ $stage -le 0 ]; then
    if [ -f "$graphdir/num_pdfs" ]; then
      [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $alignment_model | grep pdfs | awk '{print $NF}'` ] || \
        { echo "Mismatch in number of pdfs with $alignment_model" exit 1; }
    fi
      steps/decode.sh --acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam --model $alignment_model\
        --max-active $first_max_active --num-threads $num_threads\
        --skip-scoring true $graphdir $data $si_dir || exit 1;
    fi
  fi
  ##
  
  ## Some checks, and setting of defaults for variables.
  [ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1;
  [ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1;
  [ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl
  [ -z "$final_model" ] && final_model=$srcdir/final.mdl
  for f in $adapt_model $final_model; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  ##
  
  ## Set up the unadapted features "$sifeats"
  if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
  echo "$0: feature type is $feat_type";
  case $feat_type in
    delta) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";;
    lda) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |";;
    *) echo "Invalid feature type $feat_type" && exit 1;
  esac
  ##
  
  ## Now get the first-pass fMLLR transforms.
  if [ $stage -le 1 ]; then
    echo "$0: getting first-pass fMLLR transforms."
    $cmd JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \
      gunzip -c $si_dir/lat.JOB.gz \| \
      lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
      weight-silence-post --distribute=$distribute $silence_weight $silphonelist $alignment_model ark:- ark:- \| \
      gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \
      gmm-est-fmllr-gpost --fmllr-update-type=$fmllr_update_type \
      --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$sifeats" ark,s,cs:- \
      ark:$dir/trans1.JOB || exit 1;
  fi
  ##
  
  pass1feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans1.JOB ark:- ark:- |"
  
  ## Do the first adapted lattice generation pass. 
  if [ $stage -le 2 ]; then
    echo "$0: doing first adapted lattice generation phase"
    if [ -f "$graphdir/num_pdfs" ]; then
      [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $adapt_model | grep pdfs | awk '{print $NF}'` ] || \
        { echo "Mismatch in number of pdfs with $adapt_model" exit 1; }
    fi
    $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode1.JOB.log\
      gmm-latgen-faster$thread_string --max-active=$first_max_active --max-mem=$max_mem --beam=$first_beam --lattice-beam=$first_lattice_beam \
      --acoustic-scale=$acwt --allow-partial=true --word-symbol-table=$graphdir/words.txt \
      $adapt_model $graphdir/HCLG.fst "$pass1feats" "ark:|gzip -c > $dir/lat1.JOB.gz" \
      || exit 1;
  fi
  
  
  ## Do a second pass of estimating the transform.  Compose the transforms to get
  ## $dir/trans2.*.
  if [ $stage -le 3 ]; then
    echo "$0: estimating fMLLR transforms a second time."
    $cmd JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \
      lattice-to-post --acoustic-scale=$acwt "ark:gunzip -c $dir/lat1.JOB.gz|" ark:- \| \
      weight-silence-post --distribute=$distribute $silence_weight $silphonelist $adapt_model ark:- ark:- \| \
      gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \
      --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$pass1feats" \
      ark,s,cs:- ark:$dir/trans1b.JOB '&&' \
      compose-transforms --b-is-affine=true ark:$dir/trans1b.JOB ark:$dir/trans1.JOB \
      ark:$dir/trans2.JOB  || exit 1;
    if $cleanup; then
      rm $dir/trans1b.* $dir/trans1.* $dir/lat1.*.gz
    fi
  fi
  ##
  
  pass2feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans2.JOB ark:- ark:- |"
  
  # Generate a 3rd set of lattices, with the "adaptation model"; we'll use these
  # to adapt a 3rd time, and we'll rescore them.  Since we should be close to the final
  # fMLLR, we don't bother dumping un-determinized lattices to disk.
  
  ## Do the final lattice generation pass (but we'll rescore these lattices
  ## after another stage of adaptation.)
  if [ $stage -le 4 ]; then
    echo "$0: doing final lattice generation phase"
    $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode2.JOB.log\
      gmm-latgen-faster$thread_string --max-active=$max_active --max-mem=$max_mem --beam=$beam --lattice-beam=$lattice_beam \
      --acoustic-scale=$acwt --allow-partial=true --word-symbol-table=$graphdir/words.txt \
      $adapt_model $graphdir/HCLG.fst "$pass2feats" "ark:|gzip -c > $dir/lat2.JOB.gz" \
      || exit 1;
  fi
  
  
  ## Do a third pass of estimating the transform.  Compose the transforms to get
  ## $dir/trans.*.
  if [ $stage -le 5 ]; then
    echo "$0: estimating fMLLR transforms a third time."
    $cmd JOB=1:$nj $dir/log/fmllr_pass3.JOB.log \
      lattice-to-post --acoustic-scale=$acwt "ark:gunzip -c $dir/lat2.JOB.gz|" ark:- \| \
      weight-silence-post --distribute=$distribute $silence_weight $silphonelist $adapt_model ark:- ark:- \| \
      gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \
      --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$pass2feats" \
      ark,s,cs:- ark:$dir/trans2b.JOB '&&' \
      compose-transforms --b-is-affine=true ark:$dir/trans2b.JOB ark:$dir/trans2.JOB \
      ark:$dir/trans.JOB  || exit 1;
    if $cleanup; then
      rm $dir/trans2b.* $dir/trans2.*
    fi
  fi
  ##
  
  feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |"
  
  if [ $stage -le 6 ]; then
    echo "$0: doing a final pass of acoustic rescoring."
    $cmd JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \
      gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat2.JOB.gz|" "$feats" \
        "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1;
    if $cleanup; then
      rm $dir/lat2.*.gz
    fi
  fi
  
  if ! $skip_scoring ; then
    [ ! -x local/score.sh ] && \
      echo "$0: not scoring because local/score.sh does not exist or not executable." && exit 1;
    local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir
  fi
  
  exit 0;