Blame view
egs/wsj/s5/steps/decode_fmllr_extra.sh
11.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Decoding script that does fMLLR. This can be on top of delta+delta-delta, or # LDA+MLLT features. # This script does an extra pass of lattice generation over and above what the original # script did-- it's for robustness in the case where your original cepstral mean # normalization was way off. # We also added a new option --distribute=true (by default) to # weight-silence-post. This weights the silence frames in a different way, # weighting all posteriors on the frame rather than just the silence ones, which # removes a particular kind of bias that the old approach suffered from. # There are 3 models involved potentially in this script, # and for a standard, speaker-independent system they will all be the same. # The "alignment model" is for the 1st-pass decoding and to get the # Gaussian-level alignments for the "adaptation model" the first time we # do fMLLR. The "adaptation model" is used to estimate fMLLR transforms # and to generate state-level lattices. The lattices are then rescored # with the "final model". # # The following table explains where we get these 3 models from. # Note: $srcdir is one level up from the decoding directory. # # Model Default source: # # "alignment model" $srcdir/final.alimdl --alignment-model <model> # (or $srcdir/final.mdl if alimdl absent) # "adaptation model" $srcdir/final.mdl --adapt-model <model> # "final model" $srcdir/final.mdl --final-model <model> # Begin configuration section first_beam=10.0 # Beam used in initial, speaker-indep. pass first_max_active=2000 # max-active used in first two passes. first_lattice_beam=4.0 # lattice pruning beam for si decode and first-pass fMLLR decode. # the different spelling from lattice_beam is unfortunate; these scripts # have a history. alignment_model= adapt_model= final_model= cleanup=true stage=0 acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in # lattice generation. max_active=7000 max_mem=50000000 beam=13.0 lattice_beam=6.0 nj=4 silence_weight=0.01 distribute=true # option to weight-silence-post. cmd=run.pl si_dir= fmllr_update_type=full skip_scoring=false num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # ignored now. scoring_opts= # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: steps/decode_fmllr.sh [options] <graph-dir> <data-dir> <decode-dir>" echo " e.g.: steps/decode_fmllr.sh exp/tri2b/graph_tgpr data/test_dev93 exp/tri2b/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --adapt-model <adapt-mdl> # Model to compute transforms with" echo " --alignment-model <ali-mdl> # Model to get Gaussian-level alignments for" echo " # 1st pass of transform computation." echo " --final-model <finald-mdl> # Model to finally decode with" echo " --si-dir <speaker-indep-decoding-dir> # use this to skip 1st pass of decoding" echo " # Caution-- must be with same tree" echo " --acwt <acoustic-weight> # default 0.08333 ... used to get posteriors" echo " --num-threads <n> # number of threads to use, default 1." echo " --scoring-opts <opts> # options to local/score.sh" exit 1; fi graphdir=$1 data=$2 dir=`echo $3 | sed 's:/$::g'` # remove any trailing slash. srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. sdata=$data/split$nj; thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null` delta_opts=`cat $srcdir/delta_opts 2>/dev/null` silphonelist=`cat $graphdir/phones/silence.csl` || exit 1; # Some checks. Note: we don't need $srcdir/tree but we expect # it should exist, given the current structure of the scripts. for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## Work out name of alignment model. ## if [ -z "$alignment_model" ]; then if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl; else alignment_model=$srcdir/final.mdl; fi fi [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1; ## ## Do the speaker-independent decoding, if --si-dir option not present. ## if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass. si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si". if [ $stage -le 0 ]; then if [ -f "$graphdir/num_pdfs" ]; then [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $alignment_model | grep pdfs | awk '{print $NF}'` ] || \ { echo "Mismatch in number of pdfs with $alignment_model" exit 1; } fi steps/decode.sh --acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam --model $alignment_model\ --max-active $first_max_active --num-threads $num_threads\ --skip-scoring true $graphdir $data $si_dir || exit 1; fi fi ## ## Some checks, and setting of defaults for variables. [ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1; [ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1; [ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl [ -z "$final_model" ] && final_model=$srcdir/final.mdl for f in $adapt_model $final_model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## ## Set up the unadapted features "$sifeats" if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type"; case $feat_type in delta) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";; lda) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |";; *) echo "Invalid feature type $feat_type" && exit 1; esac ## ## Now get the first-pass fMLLR transforms. if [ $stage -le 1 ]; then echo "$0: getting first-pass fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \ gunzip -c $si_dir/lat.JOB.gz \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post --distribute=$distribute $silence_weight $silphonelist $alignment_model ark:- ark:- \| \ gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \ gmm-est-fmllr-gpost --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$sifeats" ark,s,cs:- \ ark:$dir/trans1.JOB || exit 1; fi ## pass1feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans1.JOB ark:- ark:- |" ## Do the first adapted lattice generation pass. if [ $stage -le 2 ]; then echo "$0: doing first adapted lattice generation phase" if [ -f "$graphdir/num_pdfs" ]; then [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $adapt_model | grep pdfs | awk '{print $NF}'` ] || \ { echo "Mismatch in number of pdfs with $adapt_model" exit 1; } fi $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode1.JOB.log\ gmm-latgen-faster$thread_string --max-active=$first_max_active --max-mem=$max_mem --beam=$first_beam --lattice-beam=$first_lattice_beam \ --acoustic-scale=$acwt --allow-partial=true --word-symbol-table=$graphdir/words.txt \ $adapt_model $graphdir/HCLG.fst "$pass1feats" "ark:|gzip -c > $dir/lat1.JOB.gz" \ || exit 1; fi ## Do a second pass of estimating the transform. Compose the transforms to get ## $dir/trans2.*. if [ $stage -le 3 ]; then echo "$0: estimating fMLLR transforms a second time." $cmd JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \ lattice-to-post --acoustic-scale=$acwt "ark:gunzip -c $dir/lat1.JOB.gz|" ark:- \| \ weight-silence-post --distribute=$distribute $silence_weight $silphonelist $adapt_model ark:- ark:- \| \ gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$pass1feats" \ ark,s,cs:- ark:$dir/trans1b.JOB '&&' \ compose-transforms --b-is-affine=true ark:$dir/trans1b.JOB ark:$dir/trans1.JOB \ ark:$dir/trans2.JOB || exit 1; if $cleanup; then rm $dir/trans1b.* $dir/trans1.* $dir/lat1.*.gz fi fi ## pass2feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans2.JOB ark:- ark:- |" # Generate a 3rd set of lattices, with the "adaptation model"; we'll use these # to adapt a 3rd time, and we'll rescore them. Since we should be close to the final # fMLLR, we don't bother dumping un-determinized lattices to disk. ## Do the final lattice generation pass (but we'll rescore these lattices ## after another stage of adaptation.) if [ $stage -le 4 ]; then echo "$0: doing final lattice generation phase" $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode2.JOB.log\ gmm-latgen-faster$thread_string --max-active=$max_active --max-mem=$max_mem --beam=$beam --lattice-beam=$lattice_beam \ --acoustic-scale=$acwt --allow-partial=true --word-symbol-table=$graphdir/words.txt \ $adapt_model $graphdir/HCLG.fst "$pass2feats" "ark:|gzip -c > $dir/lat2.JOB.gz" \ || exit 1; fi ## Do a third pass of estimating the transform. Compose the transforms to get ## $dir/trans.*. if [ $stage -le 5 ]; then echo "$0: estimating fMLLR transforms a third time." $cmd JOB=1:$nj $dir/log/fmllr_pass3.JOB.log \ lattice-to-post --acoustic-scale=$acwt "ark:gunzip -c $dir/lat2.JOB.gz|" ark:- \| \ weight-silence-post --distribute=$distribute $silence_weight $silphonelist $adapt_model ark:- ark:- \| \ gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$pass2feats" \ ark,s,cs:- ark:$dir/trans2b.JOB '&&' \ compose-transforms --b-is-affine=true ark:$dir/trans2b.JOB ark:$dir/trans2.JOB \ ark:$dir/trans.JOB || exit 1; if $cleanup; then rm $dir/trans2b.* $dir/trans2.* fi fi ## feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |" if [ $stage -le 6 ]; then echo "$0: doing a final pass of acoustic rescoring." $cmd JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \ gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat2.JOB.gz|" "$feats" \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; if $cleanup; then rm $dir/lat2.*.gz fi fi if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "$0: not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir fi exit 0; |