Blame view
egs/wsj/s5/steps/dict/learn_lexicon_greedy.sh
31.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
#! /bin/bash # Copyright 2018 Xiaohui Zhang # Apache 2.0 # This recipe has similar inputs and outputs as steps/dict/learn_lexicon.sh # The major difference is, instead of using a Bayesian framework for # pronunciation selection, we used a likelihood-reduction based greedy # pronunciation selection framework presented in the paper: # "Acoustic data-driven lexicon learning based on a greedy pronunciation " # "selection framework, by X. Zhang, V. Mahonar, D. Povey and S. Khudanpur," # "Interspeech 2017." # This script demonstrate how to expand a existing lexicon using a combination # of acoustic evidence and G2P to learn a lexicon that covers words in a target # vocab, and agrees sufficiently with the acoustics. The basic idea is to # run phonetic decoding on acoustic training data using an existing # acoustice model (possibly re-trained using a G2P-expanded lexicon) to get # alternative pronunciations for words in training data. Then we combine three # exclusive sources of pronunciations: the reference lexicon (supposedly # hand-derived), phonetic decoding, and G2P (optional) into one lexicon and then run # lattice alignment on the same data, to collect acoustic evidence (soft # counts) of all pronunciations. Based on these statistics, we use a greedy # framework (see steps/dict/select_prons_greedy.sh for details) to select an # informative subset of pronunciations for each word with acoustic evidence. # two important parameters are alpha and beta. Basically, the three dimensions of alpha # and beta correspond to three pronunciation sources: phonetic-decoding, G2P and # the reference lexicon, and the larger a value is, the more aggressive we'll # prune pronunciations from that sooure. The valid range of each dim. is [0, 1] # (for alpha, and 0 means we never pruned pron from that source.) [0, 100] (for beta). # The output of steps/dict/select_prons_greedy.sh is a learned lexicon whose vocab # matches the user-specified target-vocab, and two intermediate outputs which were # used to generate the learned lexicon: an edits file which records the recommended # changes to all in-ref-vocab words' prons, and a half-learned lexicon # ($dest_dict/lexicon0.txt) where all in-ref-vocab words' prons were untouched # (on top of which we apply the edits file to produce the final learned lexicon). # The user can always modify the edits file manually and then re-apply it on the # half-learned lexicon using steps/dict/apply_lexicon_edits.sh to produce the # final learned lexicon. See the last stage in this script for details. stage=0 # Begin configuration section. cmd=run.pl nj= stage=0 oov_symbol= lexiconp_g2p= min_prob=0.3 variant_counts_ratio=8 variant_counts_no_acoustics=1 alpha="0,0,0" beta="0,0,0" delta=0.0000001 num_gauss= num_leaves= retrain_src_mdl=true cleanup=true nj_select_prons=200 learn_iv_prons=false # whether we want to learn the prons of IV words (w.r.t. ref_vocab), # End configuration section. . ./path.sh . utils/parse_options.sh if [ $# -lt 6 ] || [ $# -gt 7 ]; then echo "Usage: $0 [options] <ref-dict> <target-vocab> <data> <src-mdl-dir> \\" echo " <ref-lang> <dest-dict> <dir>." echo " This script does lexicon expansion using a combination of acoustic" echo " evidence and G2P to produce a lexicon that covers words of a target vocab:" echo "" echo "Arguments:" echo " <ref-dict> The dir which contains the reference lexicon (most probably hand-derived)" echo " we want to expand/improve, and nonsilence_phones.txt,.etc which we need " echo " for building new dict dirs." echo " <target-vocab> The vocabulary we want the final learned lexicon to cover (one word per line)." echo " <data> acoustic training data we use to get alternative" echo " pronunciations and collet acoustic evidence." echo " <src-mdl-dir> The dir containing an SAT-GMM acoustic model (we optionaly we re-train it" echo " using G2P expanded lexicon) to do phonetic decoding (to get alternative" echo " pronunciations) and lattice-alignment (to collect acoustic evidence for" echo " evaluating all prounciations)" echo " <ref-lang> The reference lang dir which we use to get non-scored-words" echo " like <UNK> for building new dict dirs" echo " <dest-dict> The dict dir where we put the final learned lexicon, whose vocab" echo " matches <target-vocab>." echo " <dir> The dir which contains all the intermediate outputs of this script." echo "" echo "Note: <target-vocab> and the vocab of <data> don't have to match. For words" echo " who are in <target-vocab> but not seen in <data>, their pronunciations" echo " will be given by G2P at the end." echo "" echo "e.g. $0 data/local/dict data/local/lm/librispeech-vocab.txt data/train \\" echo " exp/tri3 data/lang data/local/dict_learned" echo "Options:" echo " --stage <n> # stage to run from, to enable resuming from partially" echo " # completed run (default: 0)" echo " --cmd '$cmd' # command to submit jobs with (e.g. run.pl, queue.pl)" echo " --nj <nj> # number of parallel jobs" echo " --oov-symbol '$oov_symbol' # oov symbol, like <UNK>." echo " --lexiconp-g2p # a lexicon (with prob in the second column) file containing g2p generated" echo " # pronunciations, for words in acoustic training data / target vocabulary. It's optional." echo " --min-prob <float> # The cut-off parameter used to select pronunciation candidates from phonetic" echo " # decoding. We remove pronunciations with probabilities less than this value" echo " # after normalizing the probs s.t. the max-prob is 1.0 for each word." echo " --variant-counts-ratio <int> # This ratio parameter determines the maximum number of pronunciation" echo " # candidates we will keep for each word, after pruning according to lattice statistics from" echo " # the first iteration of lattice generation. See steps/dict/internal/prune_pron_candidates.py" echo " # for details." echo " --variant-counts-no-acoustics <int> # how many g2p-prons per word we want to include for each words unseen in acoustic training data." echo " --alpha <float>,<float>,<float> # scaling factors used in the greedy pronunciation selection framework, " echo " # see steps/dict/select_prons_greedy.py for details." echo " --beta <int>,<int>,<int> # smoothing factors used in the greedy pronunciation selection framework, " echo " # see steps/dict/select_prons_greedy.py for details." echo " --delta <float> # a floor value used in the greedy pronunciation selection framework, " echo " # see steps/dict/select_prons_greedy.py for details." echo " --num-gauss # number of gaussians for the re-trained SAT model (on top of <src-mdl-dir>)." echo " --num-leaves # number of leaves for the re-trained SAT model (on top of <src-mdl-dir>)." echo " --retrain-src-mdl # true if you want to re-train the src_mdl before phone decoding (default false)." exit 1 fi echo "$0 $@" # Print the command line for logging ref_dict=$1 target_vocab=$2 data=$3 src_mdl_dir=$4 ref_lang=$5 dest_dict=$6 if [ -z "$oov_symbol" ]; then echo "$0: the --oov-symbol option is required." exit 1 fi if [ $# -gt 6 ]; then dir=$7 # Most intermediate outputs will be put here. else dir=${src_mdl_dir}_lex_learn_work fi mkdir -p $dir if [ $stage -le 0 ]; then echo "$0: Some preparatory work." # Get the word counts of training data. awk '{for (n=2;n<=NF;n++) counts[$n]++;} END{for (w in counts) printf "%s %d ",w, counts[w];}' \ $data/text | sort > $dir/train_counts.txt # Get the non-scored entries and exclude them from the reference lexicon/vocab, and target_vocab. steps/cleanup/internal/get_non_scored_words.py $ref_lang > $dir/non_scored_words awk 'NR==FNR{a[$1] = 1; next} {if($1 in a) print $0}' $dir/non_scored_words \ $ref_dict/lexicon.txt > $dir/non_scored_entries # Remove non-scored-words from the reference lexicon. awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $0}' $dir/non_scored_words \ $ref_dict/lexicon.txt | tr -s '\t' ' ' | awk '$1=$1' > $dir/ref_lexicon.txt cat $dir/ref_lexicon.txt | awk '{print $1}' | sort | uniq > $dir/ref_vocab.txt awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $0}' $dir/non_scored_words \ $target_vocab | sort | uniq > $dir/target_vocab.txt # From the reference lexicon, we estimate the target_num_prons_per_word as, # round(avg. # prons per word in the reference lexicon). This'll be used as # the upper bound of # pron variants per word when we apply G2P or select prons to # construct the learned lexicon in later stages. python -c 'import sys; import math; print int(round(float(sys.argv[1])/float(sys.argv[2])))' \ `wc -l $dir/ref_lexicon.txt | awk '{print $1}'` `wc -l $dir/ref_vocab.txt | awk '{print $1}'` \ > $dir/target_num_prons_per_word || exit 1; if [ -z $lexiconp_g2p ]; then # create an empty list of g2p generated prons, if it's not given. touch $dir/lexicon_g2p.txt touch $dir/lexiconp_g2p.txt else # Exchange the 1st column (word) and 2nd column (prob) and remove pronunciations # which are already in the reference lexicon. cat $lexiconp_g2p | awk '{a=$1;b=$2; $1="";$2="";print b" "a$0}' | \ awk 'NR==FNR{a[$0] = 1; next} {w=$2;for (n=3;n<=NF;n++) w=w" "$n; if(!(w in a)) print $0}' \ $dir/ref_lexicon.txt - > $dir/lexiconp_g2p.txt 2>/dev/null # make a copy where we remove the first column (probabilities). cat $dir/lexiconp_g2p.txt | cut -f1,3- > $dir/lexicon_g2p.txt 2>/dev/null fi variant_counts=`cat $dir/target_num_prons_per_word` || exit 1; $cmd $dir/log/prune_g2p_lexicon.log steps/dict/prons_to_lexicon.py \ --top-N=$variant_counts $dir/lexiconp_g2p.txt \ $dir/lexicon_g2p_variant_counts${variant_counts}.txt || exit 1; fi if [ $stage -le 1 ] && $retrain_src_mdl; then echo "$0: Expand the reference lexicon to cover all words in the target vocab. and then" echo " ... re-train the source acoustic model for phonetic decoding. " mkdir -p $dir/dict_expanded_target_vocab cp $ref_dict/{extra_questions.txt,optional_silence.txt,nonsilence_phones.txt,silence_phones.txt} \ $dir/dict_expanded_target_vocab 2>/dev/null rm $dir/dict_expanded_target_vocab/lexiconp.txt $dir/dict_expanded_target_vocab/lexicon.txt 2>/dev/null # Get the oov words list (w.r.t ref vocab) which are in the target vocab. awk 'NR==FNR{a[$1] = 1; next} !($1 in a)' $dir/ref_lexicon.txt \ $dir/target_vocab.txt | sort | uniq > $dir/oov_target_vocab.txt # Assign pronunciations from lexicon_g2p.txt to oov_target_vocab. For words which # cannot be found in lexicon_g2p.txt, we simply ignore them. awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/oov_target_vocab.txt \ $dir/lexicon_g2p.txt > $dir/lexicon_g2p_oov_target_vocab.txt cat $dir/lexicon_g2p_oov_target_vocab.txt $dir/ref_lexicon.txt | \ awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/target_vocab.txt - | \ cat $dir/non_scored_entries - | sort | uniq > $dir/dict_expanded_target_vocab/lexicon.txt utils/prepare_lang.sh --phone-symbol-table $ref_lang/phones.txt $dir/dict_expanded_target_vocab \ $oov_symbol $dir/lang_expanded_target_vocab_tmp $dir/lang_expanded_target_vocab || exit 1; # Align the acoustic training data using the given src_mdl_dir. alidir=${src_mdl_dir}_ali_$(basename $data) steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ $data $dir/lang_expanded_target_vocab $src_mdl_dir $alidir || exit 1; # Train another SAT system on the given data and put it in $dir/${src_mdl_dir}_retrained # this model will be used for phonetic decoding and lattice alignment later on. if [ -z $num_leaves ] || [ -z $num_gauss ] ; then echo "num_leaves and num_gauss need to be specified." && exit 1; fi steps/train_sat.sh --cmd "$train_cmd" $num_leaves $num_gauss \ $data $dir/lang_expanded_target_vocab $alidir $dir/${src_mdl_dir}_retrained || exit 1; fi if [ $stage -le 2 ]; then echo "$0: Expand the reference lexicon to cover all words seen in," echo " ... acoustic training data, and prepare corresponding dict and lang directories." echo " ... This is needed when generate pron candidates from phonetic decoding." mkdir -p $dir/dict_expanded_train cp $ref_dict/{extra_questions.txt,optional_silence.txt,nonsilence_phones.txt,silence_phones.txt} \ $dir/dict_expanded_train 2>/dev/null rm $dir/dict_expanded_train/lexiconp.txt $dir/dict_expanded_train/lexicon.txt 2>/dev/null # Get the oov words list (w.r.t ref vocab) which are in training data. awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $1}' $dir/ref_lexicon.txt \ $dir/train_counts.txt | awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $0}' \ $dir/non_scored_words - | sort > $dir/oov_train.txt || exit 1; awk 'NR==FNR{a[$1] = 1; next} {if(($1 in a)) b+=$2; else c+=$2} END{print c/(b+c)}' \ $dir/ref_vocab.txt $dir/train_counts.txt > $dir/train_oov_rate || exit 1; echo "OOV rate (w.r.t. the reference lexicon) of the acoustic training data is:" cat $dir/train_oov_rate # Assign pronunciations from lexicon_g2p to oov_train. For words which # cannot be found in lexicon_g2p, we simply assign oov_symbol's pronunciaiton # (like NSN) to them, in order to get phonetic decoding pron candidates for them later on. variant_counts=`cat $dir/target_num_prons_per_word` || exit 1; awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/oov_train.txt \ $dir/lexicon_g2p_variant_counts${variant_counts}.txt > $dir/g2p_prons_for_oov_train.txt || exit 1; # Get the pronunciation of oov_symbol. oov_pron=`cat $dir/non_scored_entries | grep $oov_symbol | awk '{print $2}'` # For oov words in training data for which we don't even have G2P pron candidates, # we simply assign them the pronunciation of the oov symbol (like <unk>), # so that we can get pronunciations for them from phonetic decoding. awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $1}' $dir/g2p_prons_for_oov_train.txt \ $dir/oov_train.txt | awk -v op="$oov_pron" '{print $0" "op}' > $dir/oov_train_no_pron.txt || exit 1; cat $dir/oov_train_no_pron.txt $dir/g2p_prons_for_oov_train.txt $dir/ref_lexicon.txt | \ awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/train_counts.txt - | \ cat - $dir/non_scored_entries | \ sort | uniq > $dir/dict_expanded_train/lexicon.txt || exit 1; utils/prepare_lang.sh $dir/dict_expanded_train $oov_symbol \ $dir/lang_expanded_train_tmp $dir/lang_expanded_train || exit 1; fi if [ $stage -le 3 ]; then echo "$0: Generate pronunciation candidates from phonetic decoding on acoustic training data.." if $retrain_src_mdl; then mdl_dir=$dir/${src_mdl_dir}_retrained; else mdl_dir=$src_mdl_dir; fi steps/cleanup/debug_lexicon.sh --nj $nj \ --cmd "$decode_cmd" $data $dir/lang_expanded_train \ $mdl_dir $dir/dict_expanded_train/lexicon.txt $dir/phonetic_decoding || exit 1; fi if [ $stage -le 4 ]; then echo "$0: Combine the reference lexicon and pronunciations from phone-decoding/G2P into one" echo " ... lexicon, and run lattice alignment using this lexicon on acoustic training data" echo " ... to collect acoustic evidence." # We first prune the phonetic decoding generated prons relative to the largest count, by setting "min_prob", # and only leave prons who are not present in the reference lexicon / g2p-generated lexicon. cat $dir/ref_lexicon.txt $dir/lexicon_g2p.txt | sort -u > $dir/phonetic_decoding/filter_lexicon.txt $cmd $dir/phonetic_decoding/log/prons_to_lexicon.log steps/dict/prons_to_lexicon.py \ --min-prob=$min_prob --filter-lexicon=$dir/phonetic_decoding/filter_lexicon.txt \ $dir/phonetic_decoding/prons.txt $dir/lexicon_pd_with_eps.txt # We abandon phonetic-decoding candidates for infrequent words. awk '{if($2 < 3) print $1}' $dir/train_counts.txt > $dir/pd_candidates_to_exclude.txt awk 'NR==FNR{a[$1] = $2; next} {if(a[$1]<10) print $1}' $dir/train_counts.txt \ $dir/oov_train_no_pron.txt >> $dir/pd_candidates_to_exclude.txt if [ -s $dir/pd_candidates_to_exclude.txt ]; then cat $dir/lexicon_pd_with_eps.txt | grep -vP "<eps>|<UNK>|<unk>|\[.*\]" | \ awk 'NR==FNR{a[$0] = 1; next} {if(!($1 in a)) print $0}' $dir/pd_candidates_to_exclude.txt - | \ sort | uniq > $dir/lexicon_pd.txt || exit 1; else cat $dir/lexicon_pd_with_eps.txt | grep -vP "<eps>|<UNK>|<unk>|\[.*\]" | \ sort | uniq > $dir/lexicon_pd.txt || exit 1; fi # Combine the reference lexicon, pronunciations from G2P and phonetic decoding into one lexicon. mkdir -p $dir/dict_combined_iter1 cp $ref_dict/{extra_questions.txt,optional_silence.txt,nonsilence_phones.txt,silence_phones.txt} \ $dir/dict_combined_iter1/ 2>/dev/null rm $dir/dict_combined_iter1/lexiconp.txt $dir/dict_combined_iter1/lexicon.txt 2>/dev/null # Filter out words which don't appear in the acoustic training data cat $dir/lexicon_pd.txt $dir/lexicon_g2p.txt \ $dir/ref_lexicon.txt | tr -s '\t' ' ' | \ awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/train_counts.txt - | \ cat $dir/non_scored_entries - | \ sort | uniq > $dir/dict_combined_iter1/lexicon.txt utils/prepare_lang.sh --phone-symbol-table $ref_lang/phones.txt \ $dir/dict_combined_iter1 $oov_symbol \ $dir/lang_combined_iter1_tmp $dir/lang_combined_iter1 || exit 1; # Generate lattices for the acoustic training data with the combined lexicon. if $retrain_src_mdl; then mdl_dir=$dir/${src_mdl_dir}_retrained; else mdl_dir=$src_mdl_dir; fi # Get the vocab for words for which we want to learn pronunciations. if $learn_iv_prons; then # If we want to learn the prons of IV words (w.r.t. ref_vocab), the learn_vocab is just the intersection of # target_vocab and the vocab of words seen in acoustic training data (first col. of train_counts.txt) awk 'NR==FNR{a[$1] = 1; next} {if($1 in a) print $1}' $dir/target_vocab.txt $dir/train_counts.txt \ > $dir/learn_vocab.txt else # Exclude words from the ref_vocab if we don't want to learn the pronunciations of IV words. awk 'NR==FNR{a[$1] = 1; next} {if($1 in a) print $1}' $dir/target_vocab.txt $dir/train_counts.txt | \ awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $1}' $dir/ref_vocab.txt - > $dir/learn_vocab.txt fi # In order to get finer lattice stats of alternative prons, we want to make lattices deeper. # To speed up lattice generation, we use a ctm to create sub-utterances and a sub-segmentation # for each instance of a word within learn_vocab (or a string of consecutive words within learn_vocab), # including a single out-of-learn-vocab word at the boundary if present. mkdir -p $dir/resegmentation steps/dict/internal/get_subsegments.py $dir/phonetic_decoding/word.ctm $dir/learn_vocab.txt \ $dir/resegmentation/subsegments $dir/resegmentation/text || exit 1; utils/data/subsegment_data_dir.sh $data $dir/resegmentation/subsegments $dir/resegmentation/text \ $dir/resegmentation/data || exit 1; steps/compute_cmvn_stats.sh $dir/resegmentation/data || exit 1; steps/align_fmllr_lats.sh --beam 20 --retry-beam 50 --final-beam 30 --acoustic-scale 0.05 --cmd "$decode_cmd" --nj $nj \ $dir/resegmentation/data $dir/lang_combined_iter1 $mdl_dir $dir/lats_iter1 || exit 1; # Get arc level information from the lattice. $cmd JOB=1:$nj $dir/lats_iter1/log/get_arc_info.JOB.log \ lattice-align-words $dir/lang_combined_iter1/phones/word_boundary.int \ $dir/lats_iter1/final.mdl \ "ark:gunzip -c $dir/lats_iter1/lat.JOB.gz |" ark:- \| \ lattice-arc-post --acoustic-scale=0.1 $dir/lats_iter1/final.mdl ark:- - \| \ utils/int2sym.pl -f 5 $dir/lang_combined_iter1/words.txt \| \ utils/int2sym.pl -f 6- $dir/lang_combined_iter1/phones.txt '>' \ $dir/lats_iter1/arc_info_sym.JOB.txt || exit 1; # Compute soft counts (pron_stats) of every particular word-pronunciation pair by # summing up arc level information over all utterances. We'll use this to prune # pronunciation candidates before the next iteration of lattice generation. cat $dir/lats_iter1/arc_info_sym.*.txt | steps/dict/get_pron_stats.py - \ $dir/phonetic_decoding/phone_map.txt $dir/lats_iter1/pron_stats.txt || exit 1; # Accumlate utterance-level pronunciation posteriors (into arc_stats) by summing up # posteriors of arcs representing the same word & pronunciation and starting # from roughly the same location. See steps/dict/internal/sum_arc_info.py for details. for i in `seq 1 $nj`;do cat $dir/lats_iter1/arc_info_sym.${i}.txt | sort -n -k1 -k2 -k3r | \ steps/dict/internal/sum_arc_info.py - $dir/phonetic_decoding/phone_map.txt $dir/lats_iter1/arc_info_summed.${i}.txt done cat $dir/lats_iter1/arc_info_summed.*.txt | sort -k1 -k2 > $dir/lats_iter1/arc_stats.txt # Prune the phonetic_decoding lexicon so that any pronunciation that only has non-zero posterior at one word example will be removed. # The pruned lexicon is put in $dir/lats_iter1. After further pruning in the next stage it'll be put back to $dir. awk 'NR==FNR{w=$1;for (n=5;n<=NF;n++) w=w" "$n;a[w]+=1;next} {if($0 in a && a[$0]>1) print $0}' \ $dir/lats_iter1/arc_stats.txt $dir/lexicon_pd.txt > $dir/lats_iter1/lexicon_pd_pruned.txt fi # Here we re-generate lattices (with a wider beam and a pruned combined lexicon) and re-collect pronunciation statistics if [ $stage -le 5 ]; then echo "$0: Prune the pronunciation candidates generated from G2P/phonetic decoding, and re-do lattice-alignment." mkdir -p $dir/dict_combined_iter2 cp $ref_dict/{extra_questions.txt,optional_silence.txt,nonsilence_phones.txt,silence_phones.txt} \ $dir/dict_combined_iter2/ 2>/dev/null rm $dir/dict_combined_iter2/lexiconp.txt $dir/dict_combined_iter2/lexicon.txt 2>/dev/null # Prune away pronunciations which have low acoustic evidence from the first pass of lattice generation. $cmd $dir/lats_iter1/log/prune_pron_candidates.log steps/dict/internal/prune_pron_candidates.py \ --variant-counts-ratio $variant_counts_ratio \ $dir/lats_iter1/pron_stats.txt $dir/lats_iter1/lexicon_pd_pruned.txt $dir/lexiconp_g2p.txt $dir/ref_lexicon.txt \ $dir/lexicon_pd_pruned.txt $dir/lexicon_g2p_pruned.txt # Filter out words which don't appear in the acoustic training data. cat $dir/lexicon_pd_pruned.txt $dir/lexicon_g2p_pruned.txt \ $dir/ref_lexicon.txt | tr -s '\t' ' ' | \ awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/train_counts.txt - | \ cat $dir/non_scored_entries - | \ sort | uniq > $dir/dict_combined_iter2/lexicon.txt utils/prepare_lang.sh --phone-symbol-table $ref_lang/phones.txt \ $dir/dict_combined_iter2 $oov_symbol \ $dir/lang_combined_iter2_tmp $dir/lang_combined_iter2 || exit 1; # Re-generate lattices with a wider beam, so that we'll get deeper lattices. if $retrain_src_mdl; then mdl_dir=$dir/${src_mdl_dir}_retrained; else mdl_dir=$src_mdl_dir; fi steps/align_fmllr_lats.sh --beam 30 --retry-beam 60 --final-beam 50 --acoustic-scale 0.05 --cmd "$decode_cmd" --nj $nj \ $dir/resegmentation/data $dir/lang_combined_iter2 $mdl_dir $dir/lats_iter2 || exit 1; # Get arc level information from the lattice as we did in the last stage. $cmd JOB=1:$nj $dir/lats_iter2/log/get_arc_info.JOB.log \ lattice-align-words $dir/lang_combined_iter2/phones/word_boundary.int \ $dir/lats_iter2/final.mdl \ "ark:gunzip -c $dir/lats_iter2/lat.JOB.gz |" ark:- \| \ lattice-arc-post --acoustic-scale=0.1 $dir/lats_iter2/final.mdl ark:- - \| \ utils/int2sym.pl -f 5 $dir/lang_combined_iter2/words.txt \| \ utils/int2sym.pl -f 6- $dir/lang_combined_iter2/phones.txt '>' \ $dir/lats_iter2/arc_info_sym.JOB.txt || exit 1; # Compute soft counts (pron_stats) of every particular word-pronunciation pair as # we did in the last stage. The stats will only be used as diagnostics. cat $dir/lats_iter2/arc_info_sym.*.txt | steps/dict/get_pron_stats.py - \ $dir/phonetic_decoding/phone_map.txt $dir/lats_iter2/pron_stats.txt || exit 1; # Accumlate utterance-level pronunciation posteriors as we did in the last stage. for i in `seq 1 $nj`;do cat $dir/lats_iter2/arc_info_sym.${i}.txt | sort -n -k1 -k2 -k3r | \ steps/dict/internal/sum_arc_info.py - $dir/phonetic_decoding/phone_map.txt $dir/lats_iter2/arc_info_summed.${i}.txt done cat $dir/lats_iter2/arc_info_summed.*.txt | sort -k1 -k2 > $dir/lats_iter2/arc_stats.txt # The pron_stats are the acoustic evidence which the likelihood-reduction-based pronunciation # selection procedure will be based on. # Split the utterance-level pronunciation posterior stats into $nj_select_prons pieces, # so that the following pronunciation selection stage can be parallelized. numsplit=$nj_select_prons awk '{print $1"-"$2" "$1}' $dir/lats_iter2/arc_stats.txt > $dir/lats_iter2/utt2word utt2words=$(for n in `seq $numsplit`; do echo $dir/lats_iter2/utt2word.$n; done) utils/split_scp.pl --utt2spk=$dir/lats_iter2/utt2word $dir/lats_iter2/utt2word $utt2words || exit 1 for n in `seq $numsplit`; do (cat $dir/lats_iter2/utt2word.$n | awk '{$1=substr($1,length($2)+2);print $2" "$1}' - > $dir/lats_iter2/word2utt.$n awk 'NR==FNR{a[$0] = 1; next} {b=$1" "$2; if(b in a) print $0}' $dir/lats_iter2/word2utt.$n \ $dir/lats_iter2/arc_stats.txt > $dir/lats_iter2/arc_stats.${n}.txt ) & done wait fi if [ $stage -le 6 ]; then echo "$0: Select pronunciations according to the acoustic evidence from lattice alignment." # Given the acoustic evidence (soft-counts), we use a Bayesian framework to select pronunciations # from three exclusive candidate sources: reference (hand-derived) lexicon, G2P and phonetic decoding. # The posteriors for all candidate prons for all words are printed into pron_posteriors.txt # For words which are out of the ref. vocab, the learned prons are written into out_of_ref_vocab_prons_learned.txt. # Among them, for words without acoustic evidence, we just ignore them, even if pron candidates from G2P were provided). # For words in the ref. vocab, we instead output a human readable & editable "edits" file called # ref_lexicon_edits.txt, which records all proposed changes to the prons (if any). Also, a # summary is printed into the log file. $cmd JOB=1:$nj_select_prons $dir/lats_iter2/log/generate_learned_lexicon.JOB.log \ steps/dict/select_prons_greedy.py \ --alpha=${alpha} --beta=${beta} \ --delta=${delta} \ $ref_dict/silence_phones.txt $dir/lats_iter2/arc_stats.JOB.txt $dir/train_counts.txt $dir/ref_lexicon.txt \ $dir/lexicon_g2p_pruned.txt $dir/lexicon_pd_pruned.txt \ $dir/lats_iter2/learned_lexicon.JOB.txt || exit 1; cat $dir/lats_iter2/learned_lexicon.*.txt > $dir/lats_iter2/learned_lexicon.txt rm $dir/lats_iter2/learned_lexicon.*.txt $cmd $dir/lats_iter2/log/lexicon_learning_summary.log \ steps/dict/merge_learned_lexicons.py \ $dir/lats_iter2/arc_stats.txt $dir/train_counts.txt $dir/ref_lexicon.txt \ $dir/lexicon_g2p_pruned.txt $dir/lexicon_pd_pruned.txt \ $dir/lats_iter2/learned_lexicon.txt \ $dir/lats_iter2/out_of_ref_vocab_prons_learned.txt $dir/lats_iter2/ref_lexicon_edits.txt || exit 1; cp $dir/lats_iter2/ref_lexicon_edits.txt $dir/lats_iter2/ref_lexicon_edits.txt # Remove some stuff that takes up space and is unlikely to be useful later on. if $cleanup; then rm -r $dir/lats_iter*/{fsts*,lat*} 2>/dev/null fi fi if [ $stage -le 7 ]; then echo "$0: Expand the learned lexicon further to cover words in target vocab that are." echo " ... not seen in acoustic training data." mkdir -p $dest_dict cp $ref_dict/{extra_questions.txt,optional_silence.txt,nonsilence_phones.txt,silence_phones.txt} \ $dest_dict 2>/dev/null rm $dest_dict/lexiconp.txt $dest_dict/lexicon.txt 2>/dev/null # Get the list of oov (w.r.t. ref vocab) without acoustic evidence, which are in the # target vocab. We'll just assign to them pronunciations from lexicon_g2p, if any. cat $dir/lats_iter2/out_of_ref_vocab_prons_learned.txt $dir/ref_lexicon.txt | \ awk 'NR==FNR{a[$1] = 1; next} !($1 in a)' - \ $dir/target_vocab.txt | sort | uniq > $dir/oov_no_acoustics.txt || exit 1; variant_counts=$variant_counts_no_acoustics $cmd $dir/log/prune_g2p_lexicon.log steps/dict/prons_to_lexicon.py \ --top-N=$variant_counts $dir/lexiconp_g2p.txt \ $dir/lexicon_g2p_variant_counts${variant_counts}.txt || exit 1; awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/oov_no_acoustics.txt \ $dir/lexicon_g2p_variant_counts${variant_counts}.txt > $dir/g2p_prons_for_oov_no_acoustics.txt|| exit 1; # Get the pronunciation of oov_symbol. oov_pron=`cat $dir/non_scored_entries | grep $oov_symbol | awk '{print $2}'` || exit 1; # For oov words in target_vocab for which we don't even have G2P pron candidates, # we simply assign them the pronunciation of the oov symbol (like <unk>), if [ -s $dir/g2p_prons_for_oov_no_acoustics.txt ]; then awk 'NR==FNR{a[$1] = 1; next} {if(!($1 in a)) print $1}' $dir/g2p_prons_for_oov_no_acoustics.txt \ $dir/oov_no_acoustics.txt | awk -v op="$oov_pron" '{print $0" "op}' > $dir/oov_target_vocab_no_pron.txt || exit 1; else awk -v op="$oov_pron" '{print $0" "op}' $dir/oov_no_acoustics.txt > $dir/oov_target_vocab_no_pron.txt || exit 1 fi # We concatenate three lexicons togethers: G2P lexicon for oov words without acoustics, # learned lexicon for oov words with acoustics, and the original reference lexicon (for # this part, later one we'll apply recommended changes using steps/dict/apply_lexicon_edits.py cat $dir/g2p_prons_for_oov_no_acoustics.txt $dir/lats_iter2/out_of_ref_vocab_prons_learned.txt \ $dir/oov_target_vocab_no_pron.txt $dir/ref_lexicon.txt | tr -s '\t' ' ' | sort | uniq > $dest_dict/lexicon.temp awk 'NR==FNR{a[$1] = 1; next} ($1 in a)' $dir/target_vocab.txt \ $dest_dict/lexicon.temp | sort | uniq > $dest_dict/lexicon.nosil cat $dir/non_scored_entries $dest_dict/lexicon.nosil | sort | uniq >$dest_dict/lexicon0.txt fi if [ $stage -le 8 ]; then echo "$0: Apply the ref_lexicon_edits file to the reference lexicon." echo " ... The user can inspect/modify the edits file and then re-run:" echo " ... steps/dict/apply_lexicon_edits.py $dest_dict/lexicon0.txt $dir/lats_iter2/ref_lexicon_edits.txt - | \\" echo " ... sort -u \> $dest_dict/lexicon.txt to re-produce the final learned lexicon." cp $dir/lats_iter2/ref_lexicon_edits.txt $dest_dict/lexicon_edits.txt 2>/dev/null steps/dict/apply_lexicon_edits.py $dest_dict/lexicon0.txt $dir/lats_iter2/ref_lexicon_edits.txt - | \ sort | uniq > $dest_dict/lexicon.txt || exit 1; fi echo "Lexicon learning ends successfully. Please refer to $dir/lats_iter2/log/lexicon_learning_summary.log" echo " for a summary. The learned lexicon, whose vocab matches the target_vocab, is $dest_dict/lexicon.txt" |