Blame view

egs/wsj/s5/steps/dict/select_prons_bayesian.py 25.7 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
  #!/usr/bin/env python
  
  # Copyright 2016  Xiaohui Zhang
  # Apache 2.0.
  
  from __future__ import print_function
  from __future__ import division
  from collections import defaultdict
  import argparse
  import sys
  import math
  
  def GetArgs():
      parser = argparse.ArgumentParser(description = "Use a Bayesian framework to select"
                                       "pronunciation candidates from three sources: reference lexicon"
                                       ", G2P lexicon and phonetic-decoding lexicon. The inputs are a word-stats file,"
                                       "a pron-stats file, and three source lexicons (ref/G2P/phonetic-decoding)."
                                       "We assume the pronunciations for each word follow a Categorical distribution"
                                       "with Dirichlet priors. Thus, with user-specified prior counts (parameterized by"
                                       "prior-mean and prior-count-tot) and observed counts from the pron-stats file, "
                                       "we can compute posterior for each pron, and select candidates with highest"
                                       "posteriors, until we hit user-specified variants-prob-mass/counts thresholds."
                                       "The outputs are: a file specifiying posteriors of all candidate (pron_posteriors),"
                                       "a learned lexicon for words out of the ref. vocab (learned_lexicon_oov),"
                                       "and a lexicon_edits file containing suggested modifications of prons, for"
                                       "words within the ref. vocab (ref_lexicon_edits).",
                                       epilog = "See steps/dict/learn_lexicon_bayesian.sh for example.")
      parser.add_argument("--prior-mean", type = str, default = "0,0,0",
                          help = "Mean of priors (summing up to 1) assigned to three exclusive n"
                          "pronunciatio sources: reference lexicon, g2p, and phonetic decoding. We "
                          "recommend setting a larger prior mean for the reference lexicon, e.g. '0.6,0.2,0.2'")
      parser.add_argument("--prior-counts-tot", type = float, default = 15.0,
                          help = "Total amount of prior counts we add to all pronunciation candidates of"
                          "each word. By timing it with the prior mean of a source, and then dividing"
                          "by the number of candidates (for a word) from this source, we get the"
                          "prior counts we actually add to each candidate.")
      parser.add_argument("--variants-prob-mass", type = float, default = 0.7,
                          help = "For each word, we pick up candidates (from all three sources)"
                          "with highest posteriors until the total prob mass hit this amount.")
      parser.add_argument("--variants-prob-mass-ref", type = float, default = 0.9,
                          help = "For each word, after the total prob mass of selected candidates "
                          "hit variants-prob-mass, we continue to pick up reference candidates"
                          "with highest posteriors until the total prob mass hit this amount (must >= variants-prob-mass).")
      parser.add_argument("--variants-counts", type = int, default = 1,
                          help = "Generate upto this many variants of prons for each word out"
                          "of the ref. lexicon.")
      parser.add_argument("silence_file", metavar = "<silphonetic-file>", type = str,
                          help = "File containing a list of silence phones.")
      parser.add_argument("pron_stats_file", metavar = "<stats-file>", type = str,
                          help = "File containing pronunciation statistics from lattice alignment; "
                          "each line must be <count> <word> <phones>.")
      parser.add_argument("word_counts_file", metavar = "<counts-file>", type = str,
                          help = "File containing word counts in acoustic training data; "
                          "each line must be <word> <count>.")
      parser.add_argument("ref_lexicon", metavar = "<reference-lexicon>", type = str,
                          help = "The reference lexicon (most probably hand-derived)."
                          "Each line must be <word> <phones>")
      parser.add_argument("g2p_lexicon", metavar = "<g2p-expanded-lexicon>", type = str,
                          help = "Candidate ronouciations from G2P results."
                          "Each line must be <word> <phones>")
      parser.add_argument("phonetic_decoding_lexicon", metavar = "<prons-in-acoustic-evidence>", type = str,
                          help = "Candidate ronouciations from phonetic decoding results."
                          "Each line must be <word> <phones>")
      parser.add_argument("pron_posteriors", metavar = "<pron-posteriors>", type = str,
                          help = "Output file containing posteriors of all candidate prons for each word,"
                          "based on which we select prons to construct the learned lexicon."
                          "each line is <word> <pronunciation-source: one of R(ef)/G(2P)/P(hone-decoding)> <posterior> <pronunciation> ")
      parser.add_argument("learned_lexicon_oov", metavar = "<learned-lexicon-oov>", type = str,
                          help = "Output file which is the learned lexicon for words out of the ref. vocab.")
      parser.add_argument("ref_lexicon_edits", metavar = "<lexicon-edits>", type = str,
                          help = "Output file containing human-readable & editable pronounciation info (and the"
                          "accept/reject decision made by our algorithm) for those words in ref. vocab," 
                          "to which any change has been recommended. The info for each word is like:" 
                          "------------ an 4086.0 --------------"
                          "R  | Y |  2401.6 |  AH N"
                          "R  | Y |  640.8 |  AE N"
                          "P  | Y |  1035.5 |  IH N"
                          "R(ef), P(hone-decoding) represents the pronunciation source"
                          "Y/N means the recommended decision of including this pron or not"
                          "and the numbers are soft counts accumulated from lattice-align-word outputs. "
                          "See the function WriteEditsAndSummary for more details.")
  
  
      print (' '.join(sys.argv), file=sys.stderr)
  
      args = parser.parse_args()
      args = CheckArgs(args)
  
      return args
  
  def CheckArgs(args):
      args.silence_file_handle = open(args.silence_file)
      if args.pron_stats_file == "-":
          args.pron_stats_file_handle = sys.stdin
      else:
          args.pron_stats_file_handle = open(args.pron_stats_file)
      args.word_counts_file_handle = open(args.word_counts_file)
      args.ref_lexicon_handle = open(args.ref_lexicon)
      args.g2p_lexicon_handle = open(args.g2p_lexicon)
      args.phonetic_decoding_lexicon_handle = open(args.phonetic_decoding_lexicon)
      args.pron_posteriors_handle = open(args.pron_posteriors, "w")
      args.learned_lexicon_oov_handle = open(args.learned_lexicon_oov, "w")
      args.ref_lexicon_edits_handle = open(args.ref_lexicon_edits, "w")
      
      prior_mean = args.prior_mean.strip().split(',')
      if len(prior_mean) is not 3:
          raise Exception('Invalid Dirichlet prior mean ', args.prior_mean)
      for i in range(0,3):
          if float(prior_mean[i]) <= 0 or float(prior_mean[i]) >= 1:
              raise Exception('Dirichlet prior mean', prior_mean[i], 'is invalid, it must be between 0 and 1.')
      args.prior_mean = [float(prior_mean[0]), float(prior_mean[1]), float(prior_mean[2])]
  
      return args
  
  def ReadPronStats(pron_stats_file_handle):
      stats = {}
      for line in pron_stats_file_handle.readlines():
          splits = line.strip().split()
          if len(splits) == 0:
              continue
          if len(splits) < 2:
              raise Exception('Invalid format of line ' + line
                                  + ' in stats file.')
          count = float(splits[0])
          word = splits[1]
          phones = ' '.join(splits[2:])
          stats[(word, phones)] = count
      return stats
  
  def ReadWordCounts(word_counts_file_handle):
      counts = {}
      for line in word_counts_file_handle.readlines():
          splits = line.strip().split()
          if len(splits) < 2:
              raise Exception('Invalid format of line ' + line
                                  + ' in counts file.')
          word = splits[0]
          count = int(splits[1])
          counts[word] = count
      return counts
  
  def ReadLexicon(args, lexicon_file_handle, counts):
      # we're skipping any word not in counts (not seen in training data),
      # cause we're only learning prons for words who have acoustic examples.
      lexicon = defaultdict(set)
      for line in lexicon_file_handle.readlines():
          splits = line.strip().split()
          if len(splits) == 0:
              continue
          if len(splits) < 2:
              raise Exception('Invalid format of line ' + line
                                  + ' in lexicon file.')
          word = splits[0]
          if word not in counts:
              continue
          phones = ' '.join(splits[1:])
          lexicon[word].add(phones)
      return lexicon
  
  def FilterPhoneticDecodingLexicon(args, phonetic_decoding_lexicon, stats):
      # We want to remove all candidates which contains silence phones
      silphones = set()
      for line in args.silence_file_handle:
          silphones.add(line.strip())
      rejected_candidates = set()
      for word, prons in phonetic_decoding_lexicon.items():
          for pron in prons:
              for phone in pron.split():
                  if phone in silphones:
                     if (word, pron) in stats:
                         count = stats[(word, pron)]
                         del stats[(word, pron)]
                     else:
                         count = 0
                     rejected_candidates.add((word, pron))
                     print('WARNING: removing the candidate pronunciation from phonetic-decoding: {0}: '
                           '"{1}" whose soft-count from lattice-alignment is {2}, cause it contains at'
                           ' least one silence phone.'.format(word, pron, count), file=sys.stderr)
                     break
      for word, pron in rejected_candidates:
          phonetic_decoding_lexicon[word].remove(pron)
      return phonetic_decoding_lexicon, stats
  
  def ComputePriorCounts(args, counts, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon):
      prior_counts = defaultdict(list)
      # In case one source is absent for a word, we set zero prior to this source, 
      # and then re-normalize the prior mean parameters s.t. they sum up to one.
      for word in counts:
          prior_mean = [args.prior_mean[0], args.prior_mean[1], args.prior_mean[2]]
          if word not in ref_lexicon:
              prior_mean[0] = 0
          if word not in g2p_lexicon:
              prior_mean[1] = 0
          if word not in phonetic_decoding_lexicon:
              prior_mean[2] = 0
          prior_mean_sum = sum(prior_mean)
          try:
              prior_mean = [float(t) / prior_mean_sum for t in prior_mean] 
          except ZeroDivisionError:
              print('WARNING: word {} appears in train_counts but not in any lexicon.'.format(word), file=sys.stderr)
          prior_counts[word] = [t * args.prior_counts_tot for t in prior_mean] 
      return prior_counts
  
  def ComputePosteriors(args, stats, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon, prior_counts):
      posteriors = defaultdict(list) # This dict stores a list of (pronunciation, posterior)
      # pairs for each word, where the posteriors are normalized soft counts. Before normalization,
      # The soft-counts were augmented by a user-specified prior count, according the source 
      # (ref/G2P/phonetic-decoding) of this pronunciation.
  
      for word, prons in ref_lexicon.items():
          for pron in prons:
              # c is the augmented soft count (observed count + prior count)
              c = float(prior_counts[word][0]) / len(ref_lexicon[word]) + stats.get((word, pron), 0)
              posteriors[word].append((pron, c))
  
      for word, prons in g2p_lexicon.items():
          for pron in prons:
              c = float(prior_counts[word][1]) / len(g2p_lexicon[word]) + stats.get((word, pron), 0)
              posteriors[word].append((pron, c))
  
      for word, prons in phonetic_decoding_lexicon.items():
          for pron in prons:
              c = float(prior_counts[word][2]) / len(phonetic_decoding_lexicon[word]) + stats.get((word, pron), 0)
              posteriors[word].append((pron, c))
  
      num_prons_from_ref = sum(len(ref_lexicon[i]) for i in ref_lexicon)
      num_prons_from_g2p = sum(len(g2p_lexicon[i]) for i in g2p_lexicon)
      num_prons_from_phonetic_decoding = sum(len(phonetic_decoding_lexicon[i]) for i in phonetic_decoding_lexicon)
      print ("---------------------------------------------------------------------------------------------------", file=sys.stderr)
      print ('Total num. words is {}:'.format(len(posteriors)), file=sys.stderr)
      print ('{0} candidate prons came from the reference lexicon; {1} came from G2P;{2} came from'
             'phonetic_decoding'.format(num_prons_from_ref, num_prons_from_g2p, num_prons_from_phonetic_decoding), file=sys.stderr)
      print ("---------------------------------------------------------------------------------------------------", file=sys.stderr)
  
      # Normalize the augmented soft counts to get posteriors.
      count_sum = defaultdict(float) # This dict stores the pronunciation which has 
      # the sum of augmented soft counts for each word.
      
      for word in posteriors:
          # each entry is a pair: (prounciation, count)
          count_sum[word] = sum([entry[1] for entry in posteriors[word]])
      
      for word, entry in posteriors.items():
          new_entry = []
          for pron, count in entry:      
              post = float(count) / count_sum[word]
              new_entry.append((pron, post))
              source = 'R'
              if word in g2p_lexicon and pron in g2p_lexicon[word]:
                  source = 'G'
              elif word in phonetic_decoding_lexicon and pron in phonetic_decoding_lexicon[word]:
                  source = 'P'
              print(word, source, "%3.2f" % post, pron, file=args.pron_posteriors_handle)
          del entry[:]
          entry.extend(sorted(new_entry, key=lambda new_entry: new_entry[1]))
      return posteriors
  
  def SelectPronsBayesian(args, counts, posteriors, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon):
      reference_selected = 0
      g2p_selected = 0
      phonetic_decoding_selected = 0
      learned_lexicon = defaultdict(set)
  
      for word, entry in posteriors.items():
          num_variants = 0
          post_tot = 0.0
          variants_counts = args.variants_counts
          variants_prob_mass = args.variants_prob_mass
          if word in ref_lexicon:
              # the variants count of the current word's prons in the ref lexicon.
              variants_counts_ref = len(ref_lexicon[word])
              # For words who don't appear in acoustic training data at all, we simply accept all ref prons.
              # For words in ref. vocab, we set the max num. variants 
              if counts.get(word, 0) > 0:
                  variants_counts = math.ceil(1.5 * variants_counts_ref)
              else:
                  variants_counts = variants_counts_ref
                  variants_prob_mass = 1.0
          last_post = 0.0
          while ((num_variants < variants_counts and post_tot < variants_prob_mass)
                 or (len(entry) > 0 and entry[-1][1] == last_post)): # this conditions 
                 # means the posterior of the current pron is the same as the one we just included.
              try:
                  pron, post = entry.pop()
                  last_post = post
              except IndexError:
                  break
              post_tot += post
              learned_lexicon[word].add(pron)
              num_variants += 1
              if word in ref_lexicon and pron in ref_lexicon[word]:
                  reference_selected += 1
              elif word in g2p_lexicon and pron in g2p_lexicon[word]:
                  g2p_selected += 1
              else:
                  phonetic_decoding_selected += 1
  
          while (num_variants < variants_counts and post_tot < args.variants_prob_mass_ref):
              try:
                  pron, post = entry.pop()
              except IndexError:
                  break
              if word in ref_lexicon and pron in ref_lexicon[word]:
                  post_tot += post
                  learned_lexicon[word].add(pron)
                  num_variants += 1
                  reference_selected += 1
  
      num_prons_tot = reference_selected + g2p_selected + phonetic_decoding_selected
      print('---------------------------------------------------------------------------------------------------', file=sys.stderr)
      print ('Num. words in the learned lexicon: {0} num. selected prons: {1}'.format(len(learned_lexicon), num_prons_tot), file=sys.stderr)
      print ('{0} selected prons came from reference candidate prons; {1} came from G2P candidate prons;'
             '{2} came from phonetic-decoding candidate prons.'.format(reference_selected, g2p_selected, phonetic_decoding_selected), file=sys.stderr) 
      return learned_lexicon
  
  def WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, phonetic_decoding_lexicon, g2p_lexicon, counts, stats):
      # Note that learned_lexicon and ref_lexicon are dicts of sets of prons, while the other two lexicons are sets of (word, pron) pairs.
      threshold = 3
      words = [defaultdict(set) for i in range(4)] # "words" contains four bins, where we
      # classify each word into, according to whether it's count > threshold,
      # and whether it's OOVs w.r.t the reference lexicon.
  
      src = {}
      print("# Note: This file contains pronunciation info for words who have candidate"
            "prons from G2P/phonetic-decoding accepted in the learned lexicon."
            ", sorted by their counts in acoustic training data, "
            ,file=args.ref_lexicon_edits_handle)
      print("# 1st Col: source of the candidate pron: G(2P) / P(hone-decoding) / R(eference)."
            ,file=args.ref_lexicon_edits_handle)
      print("# 2nd Col: accepted or not in the learned lexicon (Y/N).", file=args.ref_lexicon_edits_handle)
      print("# 3rd Col: soft counts from lattice-alignment (not augmented by prior-counts)."
            ,file=args.ref_lexicon_edits_handle)
      print("# 4th Col: the pronunciation cadidate.", file=args.ref_lexicon_edits_handle)
      
      # words which are to be printed into the edits file.
      words_to_edit = [] 
      for word in learned_lexicon:
          count = counts.get(word, 0)
          flags = ['0' for i in range(3)] # "flags" contains three binary indicators, 
          # indicating where this word's pronunciations come from.
          for pron in learned_lexicon[word]:
              if word in phonetic_decoding_lexicon and pron in phonetic_decoding_lexicon[word]:
                  flags[0] = '1'
                  src[(word, pron)] = 'P'
              if word in ref_lexicon and pron in ref_lexicon[word]:
                  flags[1] = '1'
                  src[(word, pron)] = 'R'
              if word in g2p_lexicon and pron in g2p_lexicon[word]:
                  flags[2] = '1'
                  src[(word, pron)] = 'G'
          if word in ref_lexicon:
              all_ref_prons_accepted = True
              for pron in ref_lexicon[word]:
                  if pron not in learned_lexicon[word]:
                      all_ref_prons_accepted = False
                      break
              if not all_ref_prons_accepted or flags[0] == '1' or flags[2] == '1':
                  words_to_edit.append((word, counts[word]))
              if count > threshold:
                  words[0][flags[0] + flags[1] + flags[2]].add(word)
              else:
                  words[1][flags[0] + flags[1] + flags[2]].add(word)
          else:
              if count > threshold: 
                  words[2][flags[0] + flags[2]].add(word)
              else:
                  words[3][flags[0] + flags[2]].add(word)
  
      words_to_edit_sorted = sorted(words_to_edit, key=lambda entry: entry[1], reverse=True)
      for word, count in words_to_edit_sorted:
          print("------------",word, "%2.1f" % count, "--------------", file=args.ref_lexicon_edits_handle)
          for pron in learned_lexicon[word]:
              print(src[(word, pron)], ' | Y | ', "%2.1f | " % stats.get((word, pron), 0), pron, 
                    file=args.ref_lexicon_edits_handle)
          for pron in ref_lexicon[word]:
              if pron not in learned_lexicon[word]:
                  soft_count = stats.get((word, pron), 0)
                  print('R  | N |  {:.2f} | {} '.format(soft_count, pron), file=args.ref_lexicon_edits_handle)
      print("Here are the words whose reference pron candidates were all declined", words[0]['100'], file=sys.stderr)
      print("-------------------------------------------------Summary------------------------------------------", file=sys.stderr)
      print("In the learned lexicon, out of those", len(ref_lexicon), "words from the vocab of the reference lexicon:", file=sys.stderr) 
      print("  For those frequent words whose counts in the training text > ", threshold, ":", file=sys.stderr) 
      num_freq_ivs_from_all_sources = len(words[0]['111']) + len(words[0]['110']) + len(words[0]['011'])
      num_freq_ivs_from_g2p_or_phonetic_decoding = len(words[0]['101']) + len(words[0]['001']) + len(words[0]['100'])
      num_freq_ivs_from_ref = len(words[0]['010'])
      num_infreq_ivs_from_all_sources = len(words[1]['111']) + len(words[1]['110']) + len(words[1]['011'])
      num_infreq_ivs_from_g2p_or_phonetic_decoding = len(words[1]['101']) + len(words[1]['001']) + len(words[1]['100'])
      num_infreq_ivs_from_ref = len(words[1]['010'])
      print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_freq_ivs_from_all_sources), file=sys.stderr)
      print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_freq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr) 
      print(' {} words\' selected prons came from the reference lexicon only.'.format(num_freq_ivs_from_ref), file=sys.stderr) 
      print('  For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr) 
      print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_infreq_ivs_from_all_sources), file=sys.stderr)
      print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_infreq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr) 
      print(' {} words\' selected prons came from the reference lexicon only.'.format(num_infreq_ivs_from_ref), file=sys.stderr) 
      print("---------------------------------------------------------------------------------------------------", file=sys.stderr)
      num_oovs = len(learned_lexicon) - len(ref_lexicon)
      num_freq_oovs_from_both_sources = len(words[2]['11'])
      num_freq_oovs_from_phonetic_decoding = len(words[2]['10'])
      num_freq_oovs_from_g2p = len(words[2]['01'])
      num_infreq_oovs_from_both_sources = len(words[3]['11'])
      num_infreq_oovs_from_phonetic_decoding = len(words[3]['10'])
      num_infreq_oovs_from_g2p = len(words[3]['01'])
      print('  In the learned lexicon, out of those {} OOV words (w.r.t the reference lexicon):'.format(num_oovs), file=sys.stderr)
      print('  For those words whose counts in the training text > {}:'.format(threshold), file=sys.stderr)
      print('    {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_freq_oovs_from_both_sources), file=sys.stderr)
      print('    {} words\' selected prons came from phonetic decoding only.'.format(num_freq_oovs_from_phonetic_decoding), file=sys.stderr) 
      print('    {} words\' selected prons came from G2P only.'.format(num_freq_oovs_from_g2p), file=sys.stderr) 
      print('  For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr) 
      print('    {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_infreq_oovs_from_both_sources), file=sys.stderr)
      print('    {} words\' selected prons came from phonetic decoding only.'.format(num_infreq_oovs_from_phonetic_decoding), file=sys.stderr) 
      print('    {} words\' selected prons came from G2P only.'.format(num_infreq_oovs_from_g2p), file=sys.stderr) 
  
  def WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, file_handle):
      for word, prons in learned_lexicon.items():
          if word not in ref_lexicon:
              for pron in prons:
                  print('{0} {1}'.format(word, pron), file=file_handle)
      file_handle.close()
  
  def Main():
      args = GetArgs()
  
      # Read in three lexicon sources, word counts, and pron stats.
      counts = ReadWordCounts(args.word_counts_file_handle)
      ref_lexicon = ReadLexicon(args, args.ref_lexicon_handle, counts)
      g2p_lexicon = ReadLexicon(args, args.g2p_lexicon_handle, counts)
      phonetic_decoding_lexicon =  ReadLexicon(args, args.phonetic_decoding_lexicon_handle, counts)
      stats = ReadPronStats(args.pron_stats_file_handle)
      phonetic_decoding_lexicon, stats = FilterPhoneticDecodingLexicon(args, phonetic_decoding_lexicon, stats)
     
      # Compute prior counts
      prior_counts = ComputePriorCounts(args, counts, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon)
      # Compute posteriors, and then select prons to construct the learned lexicon.
      posteriors = ComputePosteriors(args, stats, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon, prior_counts)
  
      # Select prons to construct the learned lexicon.
      learned_lexicon = SelectPronsBayesian(args, counts, posteriors, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon)
      
      # Write the learned prons for words out of the ref. vocab into learned_lexicon_oov.
      WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, args.learned_lexicon_oov_handle)
      # Edits will be printed into ref_lexicon_edits, and the summary will be printed into stderr.
      WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, phonetic_decoding_lexicon, g2p_lexicon, counts, stats)
  
  if __name__ == "__main__":
      Main()