Blame view
egs/wsj/s5/steps/dict/select_prons_bayesian.py
25.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
#!/usr/bin/env python # Copyright 2016 Xiaohui Zhang # Apache 2.0. from __future__ import print_function from __future__ import division from collections import defaultdict import argparse import sys import math def GetArgs(): parser = argparse.ArgumentParser(description = "Use a Bayesian framework to select" "pronunciation candidates from three sources: reference lexicon" ", G2P lexicon and phonetic-decoding lexicon. The inputs are a word-stats file," "a pron-stats file, and three source lexicons (ref/G2P/phonetic-decoding)." "We assume the pronunciations for each word follow a Categorical distribution" "with Dirichlet priors. Thus, with user-specified prior counts (parameterized by" "prior-mean and prior-count-tot) and observed counts from the pron-stats file, " "we can compute posterior for each pron, and select candidates with highest" "posteriors, until we hit user-specified variants-prob-mass/counts thresholds." "The outputs are: a file specifiying posteriors of all candidate (pron_posteriors)," "a learned lexicon for words out of the ref. vocab (learned_lexicon_oov)," "and a lexicon_edits file containing suggested modifications of prons, for" "words within the ref. vocab (ref_lexicon_edits).", epilog = "See steps/dict/learn_lexicon_bayesian.sh for example.") parser.add_argument("--prior-mean", type = str, default = "0,0,0", help = "Mean of priors (summing up to 1) assigned to three exclusive n" "pronunciatio sources: reference lexicon, g2p, and phonetic decoding. We " "recommend setting a larger prior mean for the reference lexicon, e.g. '0.6,0.2,0.2'") parser.add_argument("--prior-counts-tot", type = float, default = 15.0, help = "Total amount of prior counts we add to all pronunciation candidates of" "each word. By timing it with the prior mean of a source, and then dividing" "by the number of candidates (for a word) from this source, we get the" "prior counts we actually add to each candidate.") parser.add_argument("--variants-prob-mass", type = float, default = 0.7, help = "For each word, we pick up candidates (from all three sources)" "with highest posteriors until the total prob mass hit this amount.") parser.add_argument("--variants-prob-mass-ref", type = float, default = 0.9, help = "For each word, after the total prob mass of selected candidates " "hit variants-prob-mass, we continue to pick up reference candidates" "with highest posteriors until the total prob mass hit this amount (must >= variants-prob-mass).") parser.add_argument("--variants-counts", type = int, default = 1, help = "Generate upto this many variants of prons for each word out" "of the ref. lexicon.") parser.add_argument("silence_file", metavar = "<silphonetic-file>", type = str, help = "File containing a list of silence phones.") parser.add_argument("pron_stats_file", metavar = "<stats-file>", type = str, help = "File containing pronunciation statistics from lattice alignment; " "each line must be <count> <word> <phones>.") parser.add_argument("word_counts_file", metavar = "<counts-file>", type = str, help = "File containing word counts in acoustic training data; " "each line must be <word> <count>.") parser.add_argument("ref_lexicon", metavar = "<reference-lexicon>", type = str, help = "The reference lexicon (most probably hand-derived)." "Each line must be <word> <phones>") parser.add_argument("g2p_lexicon", metavar = "<g2p-expanded-lexicon>", type = str, help = "Candidate ronouciations from G2P results." "Each line must be <word> <phones>") parser.add_argument("phonetic_decoding_lexicon", metavar = "<prons-in-acoustic-evidence>", type = str, help = "Candidate ronouciations from phonetic decoding results." "Each line must be <word> <phones>") parser.add_argument("pron_posteriors", metavar = "<pron-posteriors>", type = str, help = "Output file containing posteriors of all candidate prons for each word," "based on which we select prons to construct the learned lexicon." "each line is <word> <pronunciation-source: one of R(ef)/G(2P)/P(hone-decoding)> <posterior> <pronunciation> ") parser.add_argument("learned_lexicon_oov", metavar = "<learned-lexicon-oov>", type = str, help = "Output file which is the learned lexicon for words out of the ref. vocab.") parser.add_argument("ref_lexicon_edits", metavar = "<lexicon-edits>", type = str, help = "Output file containing human-readable & editable pronounciation info (and the" "accept/reject decision made by our algorithm) for those words in ref. vocab," "to which any change has been recommended. The info for each word is like:" "------------ an 4086.0 --------------" "R | Y | 2401.6 | AH N" "R | Y | 640.8 | AE N" "P | Y | 1035.5 | IH N" "R(ef), P(hone-decoding) represents the pronunciation source" "Y/N means the recommended decision of including this pron or not" "and the numbers are soft counts accumulated from lattice-align-word outputs. " "See the function WriteEditsAndSummary for more details.") print (' '.join(sys.argv), file=sys.stderr) args = parser.parse_args() args = CheckArgs(args) return args def CheckArgs(args): args.silence_file_handle = open(args.silence_file) if args.pron_stats_file == "-": args.pron_stats_file_handle = sys.stdin else: args.pron_stats_file_handle = open(args.pron_stats_file) args.word_counts_file_handle = open(args.word_counts_file) args.ref_lexicon_handle = open(args.ref_lexicon) args.g2p_lexicon_handle = open(args.g2p_lexicon) args.phonetic_decoding_lexicon_handle = open(args.phonetic_decoding_lexicon) args.pron_posteriors_handle = open(args.pron_posteriors, "w") args.learned_lexicon_oov_handle = open(args.learned_lexicon_oov, "w") args.ref_lexicon_edits_handle = open(args.ref_lexicon_edits, "w") prior_mean = args.prior_mean.strip().split(',') if len(prior_mean) is not 3: raise Exception('Invalid Dirichlet prior mean ', args.prior_mean) for i in range(0,3): if float(prior_mean[i]) <= 0 or float(prior_mean[i]) >= 1: raise Exception('Dirichlet prior mean', prior_mean[i], 'is invalid, it must be between 0 and 1.') args.prior_mean = [float(prior_mean[0]), float(prior_mean[1]), float(prior_mean[2])] return args def ReadPronStats(pron_stats_file_handle): stats = {} for line in pron_stats_file_handle.readlines(): splits = line.strip().split() if len(splits) == 0: continue if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in stats file.') count = float(splits[0]) word = splits[1] phones = ' '.join(splits[2:]) stats[(word, phones)] = count return stats def ReadWordCounts(word_counts_file_handle): counts = {} for line in word_counts_file_handle.readlines(): splits = line.strip().split() if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in counts file.') word = splits[0] count = int(splits[1]) counts[word] = count return counts def ReadLexicon(args, lexicon_file_handle, counts): # we're skipping any word not in counts (not seen in training data), # cause we're only learning prons for words who have acoustic examples. lexicon = defaultdict(set) for line in lexicon_file_handle.readlines(): splits = line.strip().split() if len(splits) == 0: continue if len(splits) < 2: raise Exception('Invalid format of line ' + line + ' in lexicon file.') word = splits[0] if word not in counts: continue phones = ' '.join(splits[1:]) lexicon[word].add(phones) return lexicon def FilterPhoneticDecodingLexicon(args, phonetic_decoding_lexicon, stats): # We want to remove all candidates which contains silence phones silphones = set() for line in args.silence_file_handle: silphones.add(line.strip()) rejected_candidates = set() for word, prons in phonetic_decoding_lexicon.items(): for pron in prons: for phone in pron.split(): if phone in silphones: if (word, pron) in stats: count = stats[(word, pron)] del stats[(word, pron)] else: count = 0 rejected_candidates.add((word, pron)) print('WARNING: removing the candidate pronunciation from phonetic-decoding: {0}: ' '"{1}" whose soft-count from lattice-alignment is {2}, cause it contains at' ' least one silence phone.'.format(word, pron, count), file=sys.stderr) break for word, pron in rejected_candidates: phonetic_decoding_lexicon[word].remove(pron) return phonetic_decoding_lexicon, stats def ComputePriorCounts(args, counts, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon): prior_counts = defaultdict(list) # In case one source is absent for a word, we set zero prior to this source, # and then re-normalize the prior mean parameters s.t. they sum up to one. for word in counts: prior_mean = [args.prior_mean[0], args.prior_mean[1], args.prior_mean[2]] if word not in ref_lexicon: prior_mean[0] = 0 if word not in g2p_lexicon: prior_mean[1] = 0 if word not in phonetic_decoding_lexicon: prior_mean[2] = 0 prior_mean_sum = sum(prior_mean) try: prior_mean = [float(t) / prior_mean_sum for t in prior_mean] except ZeroDivisionError: print('WARNING: word {} appears in train_counts but not in any lexicon.'.format(word), file=sys.stderr) prior_counts[word] = [t * args.prior_counts_tot for t in prior_mean] return prior_counts def ComputePosteriors(args, stats, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon, prior_counts): posteriors = defaultdict(list) # This dict stores a list of (pronunciation, posterior) # pairs for each word, where the posteriors are normalized soft counts. Before normalization, # The soft-counts were augmented by a user-specified prior count, according the source # (ref/G2P/phonetic-decoding) of this pronunciation. for word, prons in ref_lexicon.items(): for pron in prons: # c is the augmented soft count (observed count + prior count) c = float(prior_counts[word][0]) / len(ref_lexicon[word]) + stats.get((word, pron), 0) posteriors[word].append((pron, c)) for word, prons in g2p_lexicon.items(): for pron in prons: c = float(prior_counts[word][1]) / len(g2p_lexicon[word]) + stats.get((word, pron), 0) posteriors[word].append((pron, c)) for word, prons in phonetic_decoding_lexicon.items(): for pron in prons: c = float(prior_counts[word][2]) / len(phonetic_decoding_lexicon[word]) + stats.get((word, pron), 0) posteriors[word].append((pron, c)) num_prons_from_ref = sum(len(ref_lexicon[i]) for i in ref_lexicon) num_prons_from_g2p = sum(len(g2p_lexicon[i]) for i in g2p_lexicon) num_prons_from_phonetic_decoding = sum(len(phonetic_decoding_lexicon[i]) for i in phonetic_decoding_lexicon) print ("---------------------------------------------------------------------------------------------------", file=sys.stderr) print ('Total num. words is {}:'.format(len(posteriors)), file=sys.stderr) print ('{0} candidate prons came from the reference lexicon; {1} came from G2P;{2} came from' 'phonetic_decoding'.format(num_prons_from_ref, num_prons_from_g2p, num_prons_from_phonetic_decoding), file=sys.stderr) print ("---------------------------------------------------------------------------------------------------", file=sys.stderr) # Normalize the augmented soft counts to get posteriors. count_sum = defaultdict(float) # This dict stores the pronunciation which has # the sum of augmented soft counts for each word. for word in posteriors: # each entry is a pair: (prounciation, count) count_sum[word] = sum([entry[1] for entry in posteriors[word]]) for word, entry in posteriors.items(): new_entry = [] for pron, count in entry: post = float(count) / count_sum[word] new_entry.append((pron, post)) source = 'R' if word in g2p_lexicon and pron in g2p_lexicon[word]: source = 'G' elif word in phonetic_decoding_lexicon and pron in phonetic_decoding_lexicon[word]: source = 'P' print(word, source, "%3.2f" % post, pron, file=args.pron_posteriors_handle) del entry[:] entry.extend(sorted(new_entry, key=lambda new_entry: new_entry[1])) return posteriors def SelectPronsBayesian(args, counts, posteriors, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon): reference_selected = 0 g2p_selected = 0 phonetic_decoding_selected = 0 learned_lexicon = defaultdict(set) for word, entry in posteriors.items(): num_variants = 0 post_tot = 0.0 variants_counts = args.variants_counts variants_prob_mass = args.variants_prob_mass if word in ref_lexicon: # the variants count of the current word's prons in the ref lexicon. variants_counts_ref = len(ref_lexicon[word]) # For words who don't appear in acoustic training data at all, we simply accept all ref prons. # For words in ref. vocab, we set the max num. variants if counts.get(word, 0) > 0: variants_counts = math.ceil(1.5 * variants_counts_ref) else: variants_counts = variants_counts_ref variants_prob_mass = 1.0 last_post = 0.0 while ((num_variants < variants_counts and post_tot < variants_prob_mass) or (len(entry) > 0 and entry[-1][1] == last_post)): # this conditions # means the posterior of the current pron is the same as the one we just included. try: pron, post = entry.pop() last_post = post except IndexError: break post_tot += post learned_lexicon[word].add(pron) num_variants += 1 if word in ref_lexicon and pron in ref_lexicon[word]: reference_selected += 1 elif word in g2p_lexicon and pron in g2p_lexicon[word]: g2p_selected += 1 else: phonetic_decoding_selected += 1 while (num_variants < variants_counts and post_tot < args.variants_prob_mass_ref): try: pron, post = entry.pop() except IndexError: break if word in ref_lexicon and pron in ref_lexicon[word]: post_tot += post learned_lexicon[word].add(pron) num_variants += 1 reference_selected += 1 num_prons_tot = reference_selected + g2p_selected + phonetic_decoding_selected print('---------------------------------------------------------------------------------------------------', file=sys.stderr) print ('Num. words in the learned lexicon: {0} num. selected prons: {1}'.format(len(learned_lexicon), num_prons_tot), file=sys.stderr) print ('{0} selected prons came from reference candidate prons; {1} came from G2P candidate prons;' '{2} came from phonetic-decoding candidate prons.'.format(reference_selected, g2p_selected, phonetic_decoding_selected), file=sys.stderr) return learned_lexicon def WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, phonetic_decoding_lexicon, g2p_lexicon, counts, stats): # Note that learned_lexicon and ref_lexicon are dicts of sets of prons, while the other two lexicons are sets of (word, pron) pairs. threshold = 3 words = [defaultdict(set) for i in range(4)] # "words" contains four bins, where we # classify each word into, according to whether it's count > threshold, # and whether it's OOVs w.r.t the reference lexicon. src = {} print("# Note: This file contains pronunciation info for words who have candidate" "prons from G2P/phonetic-decoding accepted in the learned lexicon." ", sorted by their counts in acoustic training data, " ,file=args.ref_lexicon_edits_handle) print("# 1st Col: source of the candidate pron: G(2P) / P(hone-decoding) / R(eference)." ,file=args.ref_lexicon_edits_handle) print("# 2nd Col: accepted or not in the learned lexicon (Y/N).", file=args.ref_lexicon_edits_handle) print("# 3rd Col: soft counts from lattice-alignment (not augmented by prior-counts)." ,file=args.ref_lexicon_edits_handle) print("# 4th Col: the pronunciation cadidate.", file=args.ref_lexicon_edits_handle) # words which are to be printed into the edits file. words_to_edit = [] for word in learned_lexicon: count = counts.get(word, 0) flags = ['0' for i in range(3)] # "flags" contains three binary indicators, # indicating where this word's pronunciations come from. for pron in learned_lexicon[word]: if word in phonetic_decoding_lexicon and pron in phonetic_decoding_lexicon[word]: flags[0] = '1' src[(word, pron)] = 'P' if word in ref_lexicon and pron in ref_lexicon[word]: flags[1] = '1' src[(word, pron)] = 'R' if word in g2p_lexicon and pron in g2p_lexicon[word]: flags[2] = '1' src[(word, pron)] = 'G' if word in ref_lexicon: all_ref_prons_accepted = True for pron in ref_lexicon[word]: if pron not in learned_lexicon[word]: all_ref_prons_accepted = False break if not all_ref_prons_accepted or flags[0] == '1' or flags[2] == '1': words_to_edit.append((word, counts[word])) if count > threshold: words[0][flags[0] + flags[1] + flags[2]].add(word) else: words[1][flags[0] + flags[1] + flags[2]].add(word) else: if count > threshold: words[2][flags[0] + flags[2]].add(word) else: words[3][flags[0] + flags[2]].add(word) words_to_edit_sorted = sorted(words_to_edit, key=lambda entry: entry[1], reverse=True) for word, count in words_to_edit_sorted: print("------------",word, "%2.1f" % count, "--------------", file=args.ref_lexicon_edits_handle) for pron in learned_lexicon[word]: print(src[(word, pron)], ' | Y | ', "%2.1f | " % stats.get((word, pron), 0), pron, file=args.ref_lexicon_edits_handle) for pron in ref_lexicon[word]: if pron not in learned_lexicon[word]: soft_count = stats.get((word, pron), 0) print('R | N | {:.2f} | {} '.format(soft_count, pron), file=args.ref_lexicon_edits_handle) print("Here are the words whose reference pron candidates were all declined", words[0]['100'], file=sys.stderr) print("-------------------------------------------------Summary------------------------------------------", file=sys.stderr) print("In the learned lexicon, out of those", len(ref_lexicon), "words from the vocab of the reference lexicon:", file=sys.stderr) print(" For those frequent words whose counts in the training text > ", threshold, ":", file=sys.stderr) num_freq_ivs_from_all_sources = len(words[0]['111']) + len(words[0]['110']) + len(words[0]['011']) num_freq_ivs_from_g2p_or_phonetic_decoding = len(words[0]['101']) + len(words[0]['001']) + len(words[0]['100']) num_freq_ivs_from_ref = len(words[0]['010']) num_infreq_ivs_from_all_sources = len(words[1]['111']) + len(words[1]['110']) + len(words[1]['011']) num_infreq_ivs_from_g2p_or_phonetic_decoding = len(words[1]['101']) + len(words[1]['001']) + len(words[1]['100']) num_infreq_ivs_from_ref = len(words[1]['010']) print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_freq_ivs_from_all_sources), file=sys.stderr) print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_freq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from the reference lexicon only.'.format(num_freq_ivs_from_ref), file=sys.stderr) print(' For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr) print(' {} words\' selected prons came from the reference lexicon, G2P/phonetic-decoding.'.format(num_infreq_ivs_from_all_sources), file=sys.stderr) print(' {} words\' selected prons come from G2P/phonetic-decoding-generated.'.format(num_infreq_ivs_from_g2p_or_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from the reference lexicon only.'.format(num_infreq_ivs_from_ref), file=sys.stderr) print("---------------------------------------------------------------------------------------------------", file=sys.stderr) num_oovs = len(learned_lexicon) - len(ref_lexicon) num_freq_oovs_from_both_sources = len(words[2]['11']) num_freq_oovs_from_phonetic_decoding = len(words[2]['10']) num_freq_oovs_from_g2p = len(words[2]['01']) num_infreq_oovs_from_both_sources = len(words[3]['11']) num_infreq_oovs_from_phonetic_decoding = len(words[3]['10']) num_infreq_oovs_from_g2p = len(words[3]['01']) print(' In the learned lexicon, out of those {} OOV words (w.r.t the reference lexicon):'.format(num_oovs), file=sys.stderr) print(' For those words whose counts in the training text > {}:'.format(threshold), file=sys.stderr) print(' {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_freq_oovs_from_both_sources), file=sys.stderr) print(' {} words\' selected prons came from phonetic decoding only.'.format(num_freq_oovs_from_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from G2P only.'.format(num_freq_oovs_from_g2p), file=sys.stderr) print(' For those words whose counts in the training text <= {}:'.format(threshold), file=sys.stderr) print(' {} words\' selected prons came from G2P and phonetic-decoding.'.format(num_infreq_oovs_from_both_sources), file=sys.stderr) print(' {} words\' selected prons came from phonetic decoding only.'.format(num_infreq_oovs_from_phonetic_decoding), file=sys.stderr) print(' {} words\' selected prons came from G2P only.'.format(num_infreq_oovs_from_g2p), file=sys.stderr) def WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, file_handle): for word, prons in learned_lexicon.items(): if word not in ref_lexicon: for pron in prons: print('{0} {1}'.format(word, pron), file=file_handle) file_handle.close() def Main(): args = GetArgs() # Read in three lexicon sources, word counts, and pron stats. counts = ReadWordCounts(args.word_counts_file_handle) ref_lexicon = ReadLexicon(args, args.ref_lexicon_handle, counts) g2p_lexicon = ReadLexicon(args, args.g2p_lexicon_handle, counts) phonetic_decoding_lexicon = ReadLexicon(args, args.phonetic_decoding_lexicon_handle, counts) stats = ReadPronStats(args.pron_stats_file_handle) phonetic_decoding_lexicon, stats = FilterPhoneticDecodingLexicon(args, phonetic_decoding_lexicon, stats) # Compute prior counts prior_counts = ComputePriorCounts(args, counts, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon) # Compute posteriors, and then select prons to construct the learned lexicon. posteriors = ComputePosteriors(args, stats, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon, prior_counts) # Select prons to construct the learned lexicon. learned_lexicon = SelectPronsBayesian(args, counts, posteriors, ref_lexicon, g2p_lexicon, phonetic_decoding_lexicon) # Write the learned prons for words out of the ref. vocab into learned_lexicon_oov. WriteLearnedLexiconOov(learned_lexicon, ref_lexicon, args.learned_lexicon_oov_handle) # Edits will be printed into ref_lexicon_edits, and the summary will be printed into stderr. WriteEditsAndSummary(args, learned_lexicon, ref_lexicon, phonetic_decoding_lexicon, g2p_lexicon, counts, stats) if __name__ == "__main__": Main() |