Blame view

egs/wsj/s5/steps/libs/nnet3/report/log_parse.py 22.7 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
  
  
  # Copyright 2016    Vijayaditya Peddinti
  #                   Vimal Manohar
  # Apache 2.0.
  
  from __future__ import division
  from __future__ import print_function
  import traceback
  import datetime
  import logging
  import re
  
  import libs.common as common_lib
  
  logger = logging.getLogger(__name__)
  logger.addHandler(logging.NullHandler())
  
  g_lstmp_nonlin_regex_pattern = ''.join([".*progress.([0-9]+).log:component name=(.+) ",
      "type=(.*)Component,.*",
      "i_t_sigmoid.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "f_t_sigmoid.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "c_t_tanh.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "o_t_sigmoid.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "m_t_tanh.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\]"])
  
  g_normal_nonlin_regex_pattern = ''.join([".*progress.([0-9]+).log:component name=(.+) ",
      "type=(.*)Component,.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\]"])
  
  g_normal_nonlin_regex_pattern_with_oderiv = ''.join([".*progress.([0-9]+).log:component name=(.+) ",
      "type=(.*)Component,.*",
      "value-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "deriv-avg=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\].*",
      "oderiv-rms=\[.*=\((.+)\), mean=([0-9\.\-e]+), stddev=([0-9\.e\-]+)\]"])
  
  class KaldiLogParseException(Exception):
      """ An Exception class that throws an error when there is an issue in
      parsing the log files. Extend this class if more granularity is needed.
      """
      def __init__(self, message = None):
          if message is not None and message.strip() == "":
              message = None
  
          Exception.__init__(self,
                             "There was an error while trying to parse the logs."
                             " Details : 
  {0}
  ".format(message))
  
  # This function is used to fill stats_per_component_per_iter table with the
  # results of regular expression.
  
  def fill_nonlin_stats_table_with_regex_result(groups, gate_index, stats_table):
      iteration = int(groups[0])
      component_name = groups[1]
      component_type = groups[2]
      # for value-avg
      value_percentiles = groups[3+gate_index*6]
      value_mean = float(groups[4+gate_index*6])
      value_stddev = float(groups[5+gate_index*6])
      value_percentiles_split = re.split(',| ',value_percentiles)
      assert len(value_percentiles_split) == 13
      value_5th = float(value_percentiles_split[4])
      value_50th = float(value_percentiles_split[6])
      value_95th = float(value_percentiles_split[9])
      # for deriv-avg
      deriv_percentiles = groups[6+gate_index*6]
      deriv_mean = float(groups[7+gate_index*6])
      deriv_stddev = float(groups[8+gate_index*6])
      deriv_percentiles_split = re.split(',| ',deriv_percentiles)
      assert len(deriv_percentiles_split) == 13
      deriv_5th = float(deriv_percentiles_split[4])
      deriv_50th = float(deriv_percentiles_split[6])
      deriv_95th = float(deriv_percentiles_split[9])
  
      if len(groups) <= 9:
          try:
              if iteration in stats_table[component_name]['stats']:
                  stats_table[component_name]['stats'][iteration].extend(
                          [value_mean,  value_stddev,
                           deriv_mean,  deriv_stddev,
                           value_5th,  value_50th,  value_95th,
                           deriv_5th,  deriv_50th,  deriv_95th])
              else:
                  stats_table[component_name]['stats'][iteration] = [
                          value_mean,  value_stddev,
                          deriv_mean,  deriv_stddev,
                          value_5th,  value_50th,  value_95th,
                          deriv_5th,  deriv_50th,  deriv_95th]
          except KeyError:
              stats_table[component_name] = {}
              stats_table[component_name]['type'] = component_type
              stats_table[component_name]['stats'] = {}
              stats_table[component_name][
                      'stats'][iteration] = [value_mean,  value_stddev,
                                             deriv_mean,  deriv_stddev,
                                             value_5th,  value_50th,  value_95th,
                                             deriv_5th,  deriv_50th,  deriv_95th]
      else:
          #for oderiv-rms
          oderiv_percentiles = groups[9+gate_index*6]
          oderiv_mean = float(groups[10+gate_index*6])
          oderiv_stddev = float(groups[11+gate_index*6])
          oderiv_percentiles_split = re.split(',| ',oderiv_percentiles)
          assert len(oderiv_percentiles_split) == 13
          oderiv_5th = float(oderiv_percentiles_split[4])
          oderiv_50th = float(oderiv_percentiles_split[6])
          oderiv_95th = float(oderiv_percentiles_split[9])
          try:
              if iteration in stats_table[component_name]['stats']:
                  stats_table[component_name]['stats'][iteration].extend(
                          [value_mean,  value_stddev,
                           deriv_mean,  deriv_stddev,
                           oderiv_mean, oderiv_stddev,
                           value_5th,  value_50th,  value_95th,
                           deriv_5th,  deriv_50th,  deriv_95th,
                           oderiv_5th, oderiv_50th, oderiv_95th])
              else:
                  stats_table[component_name]['stats'][iteration] = [
                          value_mean,  value_stddev,
                          deriv_mean,  deriv_stddev,
                          oderiv_mean, oderiv_stddev,
                          value_5th,  value_50th,  value_95th,
                          deriv_5th,  deriv_50th,  deriv_95th,
                          oderiv_5th, oderiv_50th, oderiv_95th]
          except KeyError:
              stats_table[component_name] = {}
              stats_table[component_name]['type'] = component_type
              stats_table[component_name]['stats'] = {}
              stats_table[component_name][
                      'stats'][iteration] = [value_mean,  value_stddev,
                                             deriv_mean,  deriv_stddev,
                                             oderiv_mean, oderiv_stddev,
                                             value_5th,  value_50th,  value_95th,
                                             deriv_5th,  deriv_50th,  deriv_95th,
                                             oderiv_5th, oderiv_50th, oderiv_95th]
  
  def parse_progress_logs_for_nonlinearity_stats(exp_dir):
  
      """ Parse progress logs for mean and std stats for non-linearities.
      e.g. for a line that is parsed from progress.*.log:
      exp/nnet3/lstm_self_repair_ld5_sp/log/progress.9.log:component name=Lstm3_i
      type=SigmoidComponent, dim=1280, self-repair-scale=1e-05, count=1.96e+05,
      value-avg=[percentiles(0,1,2,5 10,20,50,80,90
      95,98,99,100)=(0.05,0.09,0.11,0.15 0.19,0.27,0.50,0.72,0.83
      0.88,0.92,0.94,0.99), mean=0.502, stddev=0.23],
      deriv-avg=[percentiles(0,1,2,5 10,20,50,80,90
      95,98,99,100)=(0.009,0.04,0.05,0.06 0.08,0.10,0.14,0.17,0.18
      0.19,0.20,0.20,0.21), mean=0.134, stddev=0.0397]
      """
  
      progress_log_files = "%s/log/progress.*.log" % (exp_dir)
      stats_per_component_per_iter = {}
  
      progress_log_lines = common_lib.get_command_stdout(
          'grep -e "value-avg.*deriv-avg.*oderiv" {0}'.format(progress_log_files),
          require_zero_status = False)
  
      if progress_log_lines:
          # cases with oderiv-rms
          parse_regex = re.compile(g_normal_nonlin_regex_pattern_with_oderiv)
      else:
          # cases with only value-avg and deriv-avg
          progress_log_lines = common_lib.get_command_stdout(
          'grep -e "value-avg.*deriv-avg" {0}'.format(progress_log_files),
          require_zero_status = False)
          parse_regex = re.compile(g_normal_nonlin_regex_pattern)
  
      for line in progress_log_lines.split("
  "):
          mat_obj = parse_regex.search(line)
          if mat_obj is None:
              continue
          # groups = ('9', 'Lstm3_i', 'Sigmoid', '0.05...0.99', '0.502', '0.23',
          # '0.009...0.21', '0.134', '0.0397')
          groups = mat_obj.groups()
          component_type = groups[2]
          if component_type == 'LstmNonlinearity':
              parse_regex_lstmp = re.compile(g_lstmp_nonlin_regex_pattern)
              mat_obj = parse_regex_lstmp.search(line)
              groups = mat_obj.groups()
              assert len(groups) == 33
              for i in list(range(0,5)):
                  fill_nonlin_stats_table_with_regex_result(groups, i,
                          stats_per_component_per_iter)
          else:
              fill_nonlin_stats_table_with_regex_result(groups, 0,
                      stats_per_component_per_iter)
      return stats_per_component_per_iter
  
  
  def parse_difference_string(string):
      dict = {}
      for parts in string.split():
          sub_parts = parts.split(":")
          dict[sub_parts[0]] = float(sub_parts[1])
      return dict
  
  
  class MalformedClippedProportionLineException(Exception):
      def __init__(self, line):
          Exception.__init__(self,
                             "Malformed line encountered while trying to "
                             "extract clipped-proportions.
  {0}".format(line))
  
  
  def parse_progress_logs_for_clipped_proportion(exp_dir):
      """ Parse progress logs for clipped proportion stats.
  
      e.g. for a line that is parsed from progress.*.log:
      exp/chain/cwrnn_trial2_ld5_sp/log/progress.245.log:component
      name=BLstm1_forward_c type=ClipGradientComponent, dim=512,
      norm-based-clipping=true, clipping-threshold=30,
      clipped-proportion=0.000565527,
      self-repair-clipped-proportion-threshold=0.01, self-repair-target=0,
      self-repair-scale=1
      """
  
      progress_log_files = "%s/log/progress.*.log" % (exp_dir)
      component_names = set([])
      progress_log_lines = common_lib.get_command_stdout(
          'grep -e "{0}" {1}'.format(
              "clipped-proportion", progress_log_files),
          require_zero_status=False)
      parse_regex = re.compile(".*progress\.([0-9]+)\.log:component "
                               "name=(.*) type=.* "
                               "clipped-proportion=([0-9\.e\-]+)")
  
      cp_per_component_per_iter = {}
  
      max_iteration = 0
      component_names = set([])
      for line in progress_log_lines.split("
  "):
          mat_obj = parse_regex.search(line)
          if mat_obj is None:
              if line.strip() == "":
                  continue
              raise MalformedClippedProportionLineException(line)
          groups = mat_obj.groups()
          iteration = int(groups[0])
          max_iteration = max(max_iteration, iteration)
          name = groups[1]
          clipped_proportion = float(groups[2])
          if clipped_proportion > 1:
              raise MalformedClippedProportionLineException(line)
          if iteration not in cp_per_component_per_iter:
              cp_per_component_per_iter[iteration] = {}
          cp_per_component_per_iter[iteration][name] = clipped_proportion
          component_names.add(name)
      component_names = list(component_names)
      component_names.sort()
  
      # re arranging the data into an array
      # and into an cp_per_iter_per_component
      cp_per_iter_per_component = {}
      for component_name in component_names:
          cp_per_iter_per_component[component_name] = []
      data = []
      data.append(["iteration"]+component_names)
      for iter in range(max_iteration+1):
          if iter not in cp_per_component_per_iter:
              continue
          comp_dict = cp_per_component_per_iter[iter]
          row = [iter]
          for component in component_names:
              try:
                  row.append(comp_dict[component])
                  cp_per_iter_per_component[component].append(
                      [iter, comp_dict[component]])
              except KeyError:
                  # if clipped proportion is not available for a particular
                  # component it is set to None
                  # this usually happens during layer-wise discriminative
                  # training
                  row.append(None)
          data.append(row)
  
      return {'table': data,
              'cp_per_component_per_iter': cp_per_component_per_iter,
              'cp_per_iter_per_component': cp_per_iter_per_component}
  
  
  def parse_progress_logs_for_param_diff(exp_dir, pattern):
      """ Parse progress logs for per-component parameter differences.
  
      e.g. for a line that is parsed from progress.*.log:
      exp/chain/cwrnn_trial2_ld5_sp/log/progress.245.log:LOG
      (nnet3-show-progress:main():nnet3-show-progress.cc:144) Relative parameter
      differences per layer are [ Cwrnn1_T3_W_r:0.0171537
      Cwrnn1_T3_W_x:1.33338e-07 Cwrnn1_T2_W_r:0.048075 Cwrnn1_T2_W_x:1.34088e-07
      Cwrnn1_T1_W_r:0.0157277 Cwrnn1_T1_W_x:0.0212704 Final_affine:0.0321521
      Cwrnn2_T3_W_r:0.0212082 Cwrnn2_T3_W_x:1.33691e-07 Cwrnn2_T2_W_r:0.0212978
      Cwrnn2_T2_W_x:1.33401e-07 Cwrnn2_T1_W_r:0.014976 Cwrnn2_T1_W_x:0.0233588
      Cwrnn3_T3_W_r:0.0237165 Cwrnn3_T3_W_x:1.33184e-07 Cwrnn3_T2_W_r:0.0239754
      Cwrnn3_T2_W_x:1.3296e-07 Cwrnn3_T1_W_r:0.0194809 Cwrnn3_T1_W_x:0.0271934 ]
      """
  
      if pattern not in set(["Relative parameter differences",
                             "Parameter differences"]):
          raise Exception("Unknown value for pattern : {0}".format(pattern))
  
      progress_log_files = "%s/log/progress.*.log" % (exp_dir)
      progress_per_iter = {}
      component_names = set([])
      progress_log_lines = common_lib.get_command_stdout(
          'grep -e "{0}" {1}'.format(pattern, progress_log_files))
      parse_regex = re.compile(".*progress\.([0-9]+)\.log:"
                               "LOG.*{0}.*\[(.*)\]".format(pattern))
      for line in progress_log_lines.split("
  "):
          mat_obj = parse_regex.search(line)
          if mat_obj is None:
              continue
          groups = mat_obj.groups()
          iteration = groups[0]
          differences = parse_difference_string(groups[1])
          component_names = component_names.union(list(differences.keys()))
          progress_per_iter[int(iteration)] = differences
  
      component_names = list(component_names)
      component_names.sort()
      # rearranging the parameter differences available per iter
      # into parameter differences per component
      progress_per_component = {}
      for cn in component_names:
          progress_per_component[cn] = {}
  
      max_iter = max(progress_per_iter.keys())
      total_missing_iterations = 0
      gave_user_warning = False
      for iter in range(max_iter + 1):
          try:
              component_dict = progress_per_iter[iter]
          except KeyError:
              continue
  
          for component_name in component_names:
              try:
                  progress_per_component[component_name][iter] = component_dict[
                      component_name]
              except KeyError:
                  total_missing_iterations += 1
                  # the component was not found this iteration, may be because of
                  # layerwise discriminative training
                  pass
          if (total_missing_iterations/len(component_names) > 20
                  and not gave_user_warning and logger is not None):
              logger.warning("There are more than {0} missing iterations per "
                             "component. Something might be wrong.".format(
                                  total_missing_iterations/len(component_names)))
              gave_user_warning = True
  
      return {'progress_per_component': progress_per_component,
              'component_names': component_names,
              'max_iter': max_iter}
  
  
  def get_train_times(exp_dir):
      train_log_files = "%s/log/" % (exp_dir)
      train_log_names = "train.*.log"
      train_log_lines = common_lib.get_command_stdout(
          'find {0} -name "{1}" | xargs grep -H -e Accounting'.format(train_log_files,train_log_names))
      parse_regex = re.compile(".*train\.([0-9]+)\.([0-9]+)\.log:# "
                               "Accounting: time=([0-9]+) thread.*")
  
      train_times = {}
      for line in train_log_lines.split('
  '):
          mat_obj = parse_regex.search(line)
          if mat_obj is not None:
              groups = mat_obj.groups()
              try:
                  train_times[int(groups[0])][int(groups[1])] = float(groups[2])
              except KeyError:
                  train_times[int(groups[0])] = {}
                  train_times[int(groups[0])][int(groups[1])] = float(groups[2])
      iters = train_times.keys()
      for iter in iters:
          values = train_times[iter].values()
          train_times[iter] = max(values)
      return train_times
  
  def parse_prob_logs(exp_dir, key='accuracy', output="output"):
      train_prob_files = "%s/log/compute_prob_train.*.log" % (exp_dir)
      valid_prob_files = "%s/log/compute_prob_valid.*.log" % (exp_dir)
      train_prob_strings = common_lib.get_command_stdout(
          'grep -e {0} {1}'.format(key, train_prob_files))
      valid_prob_strings = common_lib.get_command_stdout(
          'grep -e {0} {1}'.format(key, valid_prob_files))
  
      # LOG
      # (nnet3-chain-compute-prob:PrintTotalStats():nnet-chain-diagnostics.cc:149)
      # Overall log-probability for 'output' is -0.399395 + -0.013437 = -0.412832
      # per frame, over 20000 fra
  
      # LOG
      # (nnet3-chain-compute-prob:PrintTotalStats():nnet-chain-diagnostics.cc:144)
      # Overall log-probability for 'output' is -0.307255 per frame, over 20000
      # frames.
  
      parse_regex = re.compile(
          ".*compute_prob_.*\.([0-9]+).log:LOG "
          ".nnet3.*compute-prob.*:PrintTotalStats..:"
          "nnet.*diagnostics.cc:[0-9]+. Overall ([a-zA-Z\-]+) for "
          "'{output}'.*is ([0-9.\-e]+) .*per frame".format(output=output))
  
      train_objf = {}
      valid_objf = {}
  
      for line in train_prob_strings.split('
  '):
          mat_obj = parse_regex.search(line)
          if mat_obj is not None:
              groups = mat_obj.groups()
              if groups[1] == key:
                  train_objf[int(groups[0])] = groups[2]
      if not train_objf:
          raise KaldiLogParseException("Could not find any lines with {k} in "
                  " {l}".format(k=key, l=train_prob_files))
  
      for line in valid_prob_strings.split('
  '):
          mat_obj = parse_regex.search(line)
          if mat_obj is not None:
              groups = mat_obj.groups()
              if groups[1] == key:
                  valid_objf[int(groups[0])] = groups[2]
  
      if not valid_objf:
          raise KaldiLogParseException("Could not find any lines with {k} in "
                  " {l}".format(k=key, l=valid_prob_files))
  
      iters = list(set(valid_objf.keys()).intersection(list(train_objf.keys())))
      if not iters:
          raise KaldiLogParseException("Could not any common iterations with"
                  " key {k} in both {tl} and {vl}".format(
                      k=key, tl=train_prob_files, vl=valid_prob_files))
      iters.sort()
      return list([(int(x), float(train_objf[x]),
                                 float(valid_objf[x])) for x in iters])
  
  def parse_rnnlm_prob_logs(exp_dir, key='objf'):
      train_prob_files = "%s/log/train.*.*.log" % (exp_dir)
      valid_prob_files = "%s/log/compute_prob.*.log" % (exp_dir)
      train_prob_strings = common_lib.get_command_stdout(
          'grep -e {0} {1}'.format(key, train_prob_files))
      valid_prob_strings = common_lib.get_command_stdout(
          'grep -e {0} {1}'.format(key, valid_prob_files))
  
      # LOG
      # (rnnlm-train[5.3.36~8-2ec51]:PrintStatsOverall():rnnlm-core-training.cc:118)
      # Overall objf is (-4.426 + -0.008287) = -4.435 over 4.503e+06 words (weighted)
      # in 1117 minibatches; exact = (-4.426 + 0) = -4.426
  
      # LOG
      # (rnnlm-compute-prob[5.3.36~8-2ec51]:PrintStatsOverall():rnnlm-core-training.cc:118)
      # Overall objf is (-4.677 + -0.002067) = -4.679 over 1.08e+05 words (weighted)
      # in 27 minibatches; exact = (-4.677 + 0.002667) = -4.674
  
      parse_regex_train = re.compile(
          ".*train\.([0-9]+).1.log:LOG "
          ".rnnlm-train.*:PrintStatsOverall..:"
          "rnnlm.*training.cc:[0-9]+. Overall ([a-zA-Z\-]+) is "
          ".*exact = \(.+\) = ([0-9.\-\+e]+)")
  
      parse_regex_valid = re.compile(
          ".*compute_prob\.([0-9]+).log:LOG "
          ".rnnlm.*compute-prob.*:PrintStatsOverall..:"
          "rnnlm.*training.cc:[0-9]+. Overall ([a-zA-Z\-]+) is "
          ".*exact = \(.+\) = ([0-9.\-\+e]+)")
  
      train_objf = {}
      valid_objf = {}
  
      for line in train_prob_strings.split('
  '):
          mat_obj = parse_regex_train.search(line)
          if mat_obj is not None:
              groups = mat_obj.groups()
              if groups[1] == key:
                  train_objf[int(groups[0])] = groups[2]
      if not train_objf:
          raise KaldiLogParseException("Could not find any lines with {k} in "
                  " {l}".format(k=key, l=train_prob_files))
  
      for line in valid_prob_strings.split('
  '):
          mat_obj = parse_regex_valid.search(line)
          if mat_obj is not None:
              groups = mat_obj.groups()
              if groups[1] == key:
                  valid_objf[int(groups[0])] = groups[2]
  
      if not valid_objf:
          raise KaldiLogParseException("Could not find any lines with {k} in "
                  " {l}".format(k=key, l=valid_prob_files))
  
      iters = list(set(valid_objf.keys()).intersection(list(train_objf.keys())))
      if not iters:
          raise KaldiLogParseException("Could not any common iterations with"
                  " key {k} in both {tl} and {vl}".format(
                      k=key, tl=train_prob_files, vl=valid_prob_files))
      iters.sort()
      return [(int(x), float(train_objf[x]),
                            float(valid_objf[x])) for x in iters]
  
  
  
  def generate_acc_logprob_report(exp_dir, key="accuracy", output="output"):
      try:
          times = get_train_times(exp_dir)
      except:
          tb = traceback.format_exc()
          logger.warning("Error getting info from logs, exception was: " + tb)
          times = {}
  
      report = []
      report.append("%Iter\tduration\ttrain_objective\tvalid_objective\tdifference")
      try:
          if key == "rnnlm_objective":
              data = list(parse_rnnlm_prob_logs(exp_dir, 'objf'))
          else:
              data = list(parse_prob_logs(exp_dir, key, output))
      except:
          tb = traceback.format_exc()
          logger.warning("Error getting info from logs, exception was: " + tb)
          data = []
      for x in data:
          try:
              report.append("%d\t%s\t%g\t%g\t%g" % (x[0], str(times[x[0]]),
                                                    x[1], x[2], x[2]-x[1]))
          except (KeyError, IndexError):
              continue
  
      total_time = 0
      for iter in times.keys():
          total_time += times[iter]
      report.append("Total training time is {0}
  ".format(
                      str(datetime.timedelta(seconds=total_time))))
      return ["
  ".join(report), times, data]