Blame view

egs/wsj/s5/steps/libs/nnet3/xconfig/attention.py 11 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  # Copyright 2017    Johns Hopkins University (Dan Povey)
  #           2017    Hossein Hadian
  # Apache 2.0.
  
  """ This module has the implementation of attention layers.
  """
  
  from __future__ import print_function
  from __future__ import division
  import math
  import re
  import sys
  from libs.nnet3.xconfig.basic_layers import XconfigLayerBase
  
  # This class is for parsing lines like
  #  'attention-renorm-layer num-heads=10 value-dim=50 key-dim=50 time-stride=3 num-left-inputs=5 num-right-inputs=2.'
  #
  # Parameters of the class, and their defaults:
  #   input='[-1]'               [Descriptor giving the input of the layer.]
  #   self-repair-scale=1.0e-05  [Affects relu, sigmoid and tanh layers.]
  #   learning-rate-factor=1.0   [This can be used to make the affine component
  #                               train faster or slower].
  #   Documentation for the rest of the parameters (related to the
  #   attention component) can be found in nnet-attention-component.h
  
  
  class XconfigAttentionLayer(XconfigLayerBase):
      def __init__(self, first_token, key_to_value, prev_names = None):
          # Here we just list some likely combinations.. you can just add any
          # combinations you want to use, to this list.
          assert first_token in ['attention-renorm-layer',
                                 'attention-relu-renorm-layer',
                                 'attention-relu-batchnorm-layer',
                                 'relu-renorm-attention-layer']
          XconfigLayerBase.__init__(self, first_token, key_to_value, prev_names)
  
      def set_default_configs(self):
          # note: self.config['input'] is a descriptor, '[-1]' means output
          # the most recent layer.
          self.config = { 'input':'[-1]',
                          'dim': -1,
                          'max-change' : 0.75,
                          'self-repair-scale' : 1.0e-05,
                          'target-rms' : 1.0,
                          'learning-rate-factor' : 1.0,
                          'ng-affine-options' : '',
                          'l2-regularize': 0.0,
                          'num-left-inputs-required': -1,
                          'num-right-inputs-required': -1,
                          'output-context': True,
                          'time-stride': 1,
                          'num-heads': 1,
                          'key-dim': -1,
                          'key-scale': 0.0,
                          'value-dim': -1,
                          'num-left-inputs': -1,
                          'num-right-inputs': -1,
                          'dropout-proportion': 0.5}  # dropout-proportion only
                                                      # affects layers with
                                                      # 'dropout' in the name.
  
      def check_configs(self):
          if self.config['self-repair-scale'] < 0.0 or self.config['self-repair-scale'] > 1.0:
              raise RuntimeError("self-repair-scale has invalid value {0}"
                                 .format(self.config['self-repair-scale']))
          if self.config['target-rms'] < 0.0:
              raise RuntimeError("target-rms has invalid value {0}"
                                 .format(self.config['target-rms']))
          if self.config['learning-rate-factor'] <= 0.0:
              raise RuntimeError("learning-rate-factor has invalid value {0}"
                                 .format(self.config['learning-rate-factor']))
          for conf in ['value-dim', 'key-dim',
                       'num-left-inputs', 'num-right-inputs']:
              if self.config[conf] < 0:
                  raise RuntimeError("{0} has invalid value {1}"
                                     .format(conf, self.config[conf]))
          if self.config['key-scale'] == 0.0:
              self.config['key-scale'] = 1.0 / math.sqrt(self.config['key-dim'])
  
      def output_name(self, auxiliary_output=None):
          # at a later stage we might want to expose even the pre-nonlinearity
          # vectors
          assert auxiliary_output == None
  
          split_layer_name = self.layer_type.split('-')
          assert split_layer_name[-1] == 'layer'
          last_nonlinearity = split_layer_name[-2]
          # return something like: layer3.renorm
          return '{0}.{1}'.format(self.name, last_nonlinearity)
  
      def attention_input_dim(self):
          context_dim = (self.config['num-left-inputs'] +
                         self.config['num-right-inputs'] + 1)
          num_heads = self.config['num-heads']
          key_dim = self.config['key-dim']
          value_dim = self.config['value-dim']
          query_dim = key_dim + context_dim;
          return num_heads * (key_dim + value_dim + query_dim)
  
      def attention_output_dim(self):
          context_dim = (self.config['num-left-inputs'] +
                         self.config['num-right-inputs'] + 1)
          num_heads = self.config['num-heads']
          value_dim = self.config['value-dim']
          return (num_heads *
                  (value_dim +
                   (context_dim if self.config['output-context'] else 0)))
  
      def output_dim(self, auxiliary_output = None):
        return self.attention_output_dim()
  
      def get_full_config(self):
          ans = []
          config_lines = self._generate_config()
  
          for line in config_lines:
              for config_name in ['ref', 'final']:
                  # we do not support user specified matrices in this layer
                  # so 'ref' and 'final' configs are the same.
                  ans.append((config_name, line))
          return ans
  
  
      def _generate_config(self):
          split_layer_name = self.layer_type.split('-')
          assert split_layer_name[-1] == 'layer'
          nonlinearities = split_layer_name[:-1]
  
          # by 'descriptor_final_string' we mean a string that can appear in
          # config-files, i.e. it contains the 'final' names of nodes.
          input_desc = self.descriptors['input']['final-string']
          input_dim = self.descriptors['input']['dim']
  
          # the child classes e.g. tdnn might want to process the input
          # before adding the other components
  
          return self._add_components(input_desc, input_dim, nonlinearities)
  
      def _add_components(self, input_desc, input_dim, nonlinearities):
          dim = self.attention_input_dim()
          self_repair_scale = self.config['self-repair-scale']
          target_rms = self.config['target-rms']
          max_change = self.config['max-change']
          ng_affine_options = self.config['ng-affine-options']
          l2_regularize = self.config['l2-regularize']
          learning_rate_factor=self.config['learning-rate-factor']
          learning_rate_option=('learning-rate-factor={0}'.format(learning_rate_factor)
                                if learning_rate_factor != 1.0 else '')
          l2_regularize_option = ('l2-regularize={0} '.format(l2_regularize)
                                  if l2_regularize != 0.0 else '')
          configs = []
          # First the affine node.
          line = ('component name={0}.affine'
                  ' type=NaturalGradientAffineComponent'
                  ' input-dim={1}'
                  ' output-dim={2}'
                  ' max-change={3}'
                  ' {4} {5} {6}'
                  ''.format(self.name, input_dim, dim,
                            max_change, ng_affine_options,
                            learning_rate_option, l2_regularize_option))
          configs.append(line)
  
          line = ('component-node name={0}.affine'
                  ' component={0}.affine input={1}'
                  ''.format(self.name, input_desc))
          configs.append(line)
          cur_node = '{0}.affine'.format(self.name)
  
          for nonlinearity in nonlinearities:
              if nonlinearity == 'relu':
                  line = ('component name={0}.{1}'
                          ' type=RectifiedLinearComponent dim={2}'
                          ' self-repair-scale={3}'
                          ''.format(self.name, nonlinearity, dim,
                              self_repair_scale))
  
              elif nonlinearity == 'attention':
                  line = ('component name={0}.{1}'
                          ' type=RestrictedAttentionComponent'
                          ' value-dim={2}'
                          ' key-dim={3}'
                          ' num-left-inputs={4}'
                          ' num-right-inputs={5}'
                          ' num-left-inputs-required={6}'
                          ' num-right-inputs-required={7}'
                          ' output-context={8}'
                          ' time-stride={9}'
                          ' num-heads={10}'
                          ' key-scale={11}'
                          ''.format(self.name, nonlinearity,
                                    self.config['value-dim'],
                                    self.config['key-dim'],
                                    self.config['num-left-inputs'],
                                    self.config['num-right-inputs'],
                                    self.config['num-left-inputs-required'],
                                    self.config['num-right-inputs-required'],
                                    self.config['output-context'],
                                    self.config['time-stride'],
                                    self.config['num-heads'],
                                    self.config['key-scale']))
                  dim = self.attention_output_dim()
  
              elif nonlinearity == 'sigmoid':
                  line = ('component name={0}.{1}'
                          ' type=SigmoidComponent dim={2}'
                          ' self-repair-scale={3}'
                          ''.format(self.name, nonlinearity, dim,
                              self_repair_scale))
  
              elif nonlinearity == 'tanh':
                  line = ('component name={0}.{1}'
                          ' type=TanhComponent dim={2}'
                          ' self-repair-scale={3}'
                          ''.format(self.name, nonlinearity, dim,
                              self_repair_scale))
  
              elif nonlinearity == 'renorm':
                  line = ('component name={0}.{1}'
                          ' type=NormalizeComponent dim={2}'
                          ' target-rms={3}'
                          ''.format(self.name, nonlinearity, dim,
                              target_rms))
  
              elif nonlinearity == 'batchnorm':
                  line = ('component name={0}.{1}'
                          ' type=BatchNormComponent dim={2}'
                          ' target-rms={3}'
                          ''.format(self.name, nonlinearity, dim,
                              target_rms))
  
              elif nonlinearity == 'dropout':
                  line = ('component name={0}.{1} type=DropoutComponent '
                             'dim={2} dropout-proportion={3}'.format(
                                 self.name, nonlinearity, dim,
                                 self.config['dropout-proportion']))
  
              else:
                  raise RuntimeError("Unknown nonlinearity type: {0}"
                                     .format(nonlinearity))
  
              configs.append(line)
              line = ('component-node name={0}.{1}'
                      ' component={0}.{1} input={2}'
                      ''.format(self.name, nonlinearity, cur_node))
  
              configs.append(line)
              cur_node = '{0}.{1}'.format(self.name, nonlinearity)
          return configs