Blame view

egs/wsj/s5/steps/nnet/train_mmi.sh 8.22 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  #!/bin/bash
  # Copyright 2013-2015  Brno University of Technology (author: Karel Vesely)
  # Apache 2.0.
  
  # Sequence-discriminative MMI/BMMI training of DNN.
  # 4 iterations (by default) of Stochastic Gradient Descent with per-utterance updates.
  # Boosting of paths with more errors (BMMI) gets activated by '--boost <float>' option.
  
  # For the numerator we have a fixed alignment rather than a lattice--
  # this actually follows from the way lattices are defined in Kaldi, which
  # is to have a single path for each word (output-symbol) sequence.
  
  
  # Begin configuration section.
  cmd=run.pl
  num_iters=4
  boost=0.0 #ie. disable boosting
  acwt=0.1
  lmwt=1.0
  learn_rate=0.00001
  halving_factor=1.0 #ie. disable halving
  drop_frames=true
  verbose=0 # 0 No GPU time-stats, 1 with GPU time-stats (slower),
  ivector=
  
  seed=777    # seed value used for training data shuffling
  skip_cuda_check=false
  # End configuration section
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f ./path.sh ] && . ./path.sh; # source the path.
  . parse_options.sh || exit 1;
  
  set -euo pipefail
  
  if [ $# -ne 6 ]; then
    echo "Usage: $0 <data> <lang> <srcdir> <ali> <denlats> <exp>"
    echo " e.g.: $0 data/train_all data/lang exp/tri3b_dnn exp/tri3b_dnn_ali exp/tri3b_dnn_denlats exp/tri3b_dnn_mmi"
    echo "Main options (for others, see top of script file)"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --config <config-file>                           # config containing options"
    echo "  --num-iters <N>                                  # number of iterations to run"
    echo "  --acwt <float>                                   # acoustic score scaling"
    echo "  --lmwt <float>                                   # linguistic score scaling"
    echo "  --learn-rate <float>                             # learning rate for NN training"
    echo "  --drop-frames <bool>                             # drop frames num/den completely disagree"
    echo "  --boost <boost-weight>                           # (e.g. 0.1), for boosted MMI.  (default 0)"
  
    exit 1;
  fi
  
  data=$1
  lang=$2
  srcdir=$3
  alidir=$4
  denlatdir=$5
  dir=$6
  
  for f in $data/feats.scp $denlatdir/lat.scp \
           $alidir/{tree,final.mdl,ali.1.gz} \
           $srcdir/{final.nnet,final.feature_transform}; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  # check if CUDA compiled in,
  if ! $skip_cuda_check; then cuda-compiled || { echo "Error, CUDA not compiled-in!"; exit 1; } fi
  
  mkdir -p $dir/log
  
  utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt
  cp $lang/phones.txt $dir
  
  cp $alidir/{final.mdl,tree} $dir
  
  silphonelist=`cat $lang/phones/silence.csl`
  
  
  #Get the files we will need
  nnet=$srcdir/$(readlink $srcdir/final.nnet || echo final.nnet);
  [ -z "$nnet" ] && echo "Error nnet '$nnet' does not exist!" && exit 1;
  cp $nnet $dir/0.nnet; nnet=$dir/0.nnet
  
  class_frame_counts=$srcdir/ali_train_pdf.counts
  [ -z "$class_frame_counts" ] && echo "Error class_frame_counts '$class_frame_counts' does not exist!" && exit 1;
  cp $srcdir/ali_train_pdf.counts $dir
  
  feature_transform=$srcdir/final.feature_transform
  if [ ! -f $feature_transform ]; then
    echo "Missing feature_transform '$feature_transform'"
    exit 1
  fi
  cp $feature_transform $dir/final.feature_transform
  
  model=$dir/final.mdl
  [ -z "$model" ] && echo "Error transition model '$model' does not exist!" && exit 1;
  
  
  
  # Shuffle the feature list to make the GD stochastic!
  # By shuffling features, we have to use lattices with random access (indexed by .scp file).
  cat $data/feats.scp | utils/shuffle_list.pl --srand $seed >$dir/train.scp
  
  ###
  ### PREPARE FEATURE EXTRACTION PIPELINE
  ###
  # import config,
  cmvn_opts=
  delta_opts=
  D=$srcdir
  [ -e $D/norm_vars ] && cmvn_opts="--norm-means=true --norm-vars=$(cat $D/norm_vars)" # Bwd-compatibility,
  [ -e $D/cmvn_opts ] && cmvn_opts=$(cat $D/cmvn_opts)
  [ -e $D/delta_order ] && delta_opts="--delta-order=$(cat $D/delta_order)" # Bwd-compatibility,
  [ -e $D/delta_opts ] && delta_opts=$(cat $D/delta_opts)
  #
  # Create the feature stream,
  feats="ark,o:copy-feats scp:$dir/train.scp ark:- |"
  # apply-cmvn (optional),
  [ ! -z "$cmvn_opts" -a ! -f $data/cmvn.scp ] && echo "$0: Missing $data/cmvn.scp" && exit 1
  [ ! -z "$cmvn_opts" ] && feats="$feats apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp ark:- ark:- |"
  # add-deltas (optional),
  [ ! -z "$delta_opts" ] && feats="$feats add-deltas $delta_opts ark:- ark:- |"
  # add-pytel transform (optional),
  [ -e $D/pytel_transform.py ] && feats="$feats /bin/env python $D/pytel_transform.py |"
  
  # add-ivector (optional),
  if [ -e $D/ivector_dim ]; then
    [ -z $ivector ] && echo "Missing --ivector, they were used in training!" && exit 1
    # Get the tool,
    ivector_append_tool=append-vector-to-feats # default,
    [ -e $D/ivector_append_tool ] && ivector_append_tool=$(cat $D/ivector_append_tool)
    # Check dims,
    dim_raw=$(feat-to-dim "$feats" -)
    dim_raw_and_ivec=$(feat-to-dim "$feats $ivector_append_tool ark:- '$ivector' ark:- |" -)
    dim_ivec=$((dim_raw_and_ivec - dim_raw))
    [ $dim_ivec != "$(cat $D/ivector_dim)" ] && \
      echo "Error, i-vector dim. mismatch (expected $(cat $D/ivector_dim), got $dim_ivec in '$ivector')" && \
      exit 1
    # Append to feats,
    feats="$feats $ivector_append_tool ark:- '$ivector' ark:- |"
  fi
  
  ### Record the setup,
  [ ! -z "$cmvn_opts" ] && echo $cmvn_opts >$dir/cmvn_opts
  [ ! -z "$delta_opts" ] && echo $delta_opts >$dir/delta_opts
  [ -e $D/pytel_transform.py ] && cp $D/pytel_transform.py $dir/pytel_transform.py
  [ -e $D/ivector_dim ] && cp $D/ivector_dim $dir/ivector_dim
  [ -e $D/ivector_append_tool ] && cp $D/ivector_append_tool $dir/ivector_append_tool
  ###
  
  ###
  ### Prepare the alignments
  ###
  # Assuming all alignments will fit into memory
  ali="ark:gunzip -c $alidir/ali.*.gz |"
  
  
  ###
  ### Prepare the lattices
  ###
  # The lattices are indexed by SCP (they are not gziped because of the random access in SGD)
  lats="scp:$denlatdir/lat.scp"
  
  # Optionally apply boosting
  if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then
    # make lattice scp with same order as the shuffled feature scp,
    awk '{ if(r==0) { utt_id=$1; latH[$1]=$0; } # lat.scp
           if(r==1) { if(latH[$1] != "") { print latH[$1]; } } # train.scp
    }' r=0 $denlatdir/lat.scp r=1 $dir/train.scp > $dir/lat.scp
    # get the list of alignments,
    ali-to-phones $alidir/final.mdl "$ali" ark,t:- | awk '{print $1;}' > $dir/ali.lst
    # remove from features sentences which have no lattice or no alignment,
    # (so that the mmi training tool does not blow-up due to lattice caching),
    mv $dir/train.scp $dir/train.scp_unfilt
    awk '{ if(r==0) { latH[$1]="1"; } # lat.scp
           if(r==1) { aliH[$1]="1"; } # ali.lst
           if(r==2) { if((latH[$1] != "") && (aliH[$1] != "")) { print $0; } } # train.scp_
    }' r=0 $dir/lat.scp r=1 $dir/ali.lst r=2 $dir/train.scp_unfilt > $dir/train.scp
    # create the lat pipeline,
    lats="ark,o:lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl scp:$dir/lat.scp '$ali' ark:- |"
  fi
  ###
  ###
  ###
  
  # Run several iterations of the MMI/BMMI training
  cur_mdl=$nnet
  x=1
  while [ $x -le $num_iters ]; do
    echo "Pass $x (learnrate $learn_rate)"
    if [ -f $dir/$x.nnet ]; then
      echo "Skipped, file $dir/$x.nnet exists"
    else
      $cmd $dir/log/mmi.$x.log \
       nnet-train-mmi-sequential \
         --feature-transform=$feature_transform \
         --class-frame-counts=$class_frame_counts \
         --acoustic-scale=$acwt \
         --lm-scale=$lmwt \
         --learn-rate=$learn_rate \
         --drop-frames=$drop_frames \
         --verbose=$verbose \
         $cur_mdl $alidir/final.mdl "$feats" "$lats" "$ali" $dir/$x.nnet
    fi
    cur_mdl=$dir/$x.nnet
  
    #report the progress
    grep -B 2 MMI-objective $dir/log/mmi.$x.log | sed -e 's|^[^)]*)[^)]*)||'
  
    x=$((x+1))
    learn_rate=$(awk "BEGIN{print($learn_rate*$halving_factor)}")
  
  done
  
  (cd $dir; [ -e final.nnet ] && unlink final.nnet; ln -s $((x-1)).nnet final.nnet)
  
  echo "MMI/BMMI training finished"
  
  if [ -e $dir/prior_counts ]; then
    echo "Priors are already re-estimated, skipping... ($dir/prior_counts)"
  else
    echo "Re-estimating priors by forwarding 10k utterances from training set."
    . ./cmd.sh
    nj=$(cat $alidir/num_jobs)
    steps/nnet/make_priors.sh --cmd "$train_cmd" --nj $nj \
      ${ivector:+ --ivector "$ivector"} $data $dir
  fi
  
  echo "$0: Done. '$dir'"
  exit 0