Blame view

egs/wsj/s5/steps/nnet2/decode.sh 6.66 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  #!/bin/bash
  
  # Copyright 2012-2013  Johns Hopkins University (Author: Daniel Povey).
  # Apache 2.0.
  
  # This script does decoding with a neural-net.  If the neural net was built on
  # top of fMLLR transforms from a conventional system, you should provide the
  # --transform-dir option.
  
  # Begin configuration section.
  stage=1
  transform_dir=    # dir to find fMLLR transforms.
  nj=4 # number of decoding jobs.  If --transform-dir set, must match that number!
  acwt=0.1  # Just a default value, used for adaptation and beam-pruning..
  cmd=run.pl
  beam=15.0
  max_active=7000
  min_active=200
  ivector_scale=1.0
  lattice_beam=8.0 # Beam we use in lattice generation.
  iter=final
  num_threads=1 # if >1, will use gmm-latgen-faster-parallel
  parallel_opts=  # ignored now.
  scoring_opts=
  skip_scoring=false
  feat_type=
  online_ivector_dir=
  minimize=false
  # End configuration section.
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f ./path.sh ] && . ./path.sh; # source the path.
  . parse_options.sh || exit 1;
  
  if [ $# -ne 3 ]; then
    echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>"
    echo " e.g.: $0 --transform-dir exp/tri3b/decode_dev93_tgpr \\"
    echo "      exp/tri3b/graph_tgpr data/test_dev93 exp/tri4a_nnet/decode_dev93_tgpr"
    echo "main options (for others, see top of script file)"
    echo "  --transform-dir <decoding-dir>           # directory of previous decoding"
    echo "                                           # where we can find transforms for SAT systems."
    echo "  --config <config-file>                   # config containing options"
    echo "  --nj <nj>                                # number of parallel jobs"
    echo "  --cmd <cmd>                              # Command to run in parallel with"
    echo "  --beam <beam>                            # Decoding beam; default 15.0"
    echo "  --iter <iter>                            # Iteration of model to decode; default is final."
    echo "  --scoring-opts <string>                  # options to local/score.sh"
    echo "  --num-threads <n>                        # number of threads to use, default 1."
    echo "  --parallel-opts <opts>                   # e.g. '--num-threads 4' if you supply --num-threads 4"
    exit 1;
  fi
  
  graphdir=$1
  data=$2
  dir=$3
  srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
  model=$srcdir/$iter.mdl
  
  
  [ ! -z "$online_ivector_dir" ] && \
    extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"
  
  for f in $graphdir/HCLG.fst $data/feats.scp $model $extra_files; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  sdata=$data/split$nj;
  cmvn_opts=`cat $srcdir/cmvn_opts` || exit 1;
  thread_string=
  [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads"
  
  mkdir -p $dir/log
  [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
  echo $nj > $dir/num_jobs
  
  
  ## Set up features.
  if [ -z "$feat_type" ]; then
    if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi
    echo "$0: feature type is $feat_type"
  fi
  
  splice_opts=`cat $srcdir/splice_opts 2>/dev/null`
  
  case $feat_type in
    raw) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
    if [ -f $srcdir/delta_order ]; then
      delta_order=`cat $srcdir/delta_order 2>/dev/null`
      feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |"
    fi
      ;;
    lda) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |"
      ;;
    *) echo "$0: invalid feature type $feat_type" && exit 1;
  esac
  if [ ! -z "$transform_dir" ]; then
    echo "$0: using transforms from $transform_dir"
    [ ! -s $transform_dir/num_jobs ] && \
      echo "$0: expected $transform_dir/num_jobs to contain the number of jobs." && exit 1;
    nj_orig=$(cat $transform_dir/num_jobs)
  
    if [ $feat_type == "raw" ]; then trans=raw_trans;
    else trans=trans; fi
    if [ $feat_type == "lda" ] && \
      ! cmp $transform_dir/../final.mat $srcdir/final.mat && \
      ! cmp $transform_dir/final.mat $srcdir/final.mat; then
      echo "$0: LDA transforms differ between $srcdir and $transform_dir"
      exit 1;
    fi
    if [ ! -f $transform_dir/$trans.1 ]; then
      echo "$0: expected $transform_dir/$trans.1 to exist (--transform-dir option)"
      exit 1;
    fi
    if [ $nj -ne $nj_orig ]; then
      # Copy the transforms into an archive with an index.
      for n in $(seq $nj_orig); do cat $transform_dir/$trans.$n; done | \
         copy-feats ark:- ark,scp:$dir/$trans.ark,$dir/$trans.scp || exit 1;
      feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk scp:$dir/$trans.scp ark:- ark:- |"
    else
      # number of jobs matches with alignment dir.
      feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/$trans.JOB ark:- ark:- |"
    fi
  elif grep 'transform-feats --utt2spk' $srcdir/log/train.1.log >&/dev/null; then
    echo "$0: **WARNING**: you seem to be using a neural net system trained with transforms,"
    echo "  but you are not providing the --transform-dir option in test time."
  fi
  ##
  
  if [ ! -z "$online_ivector_dir" ]; then
    ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
    # note: subsample-feats, with negative n, will repeat each feature -n times.
    feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- | copy-matrix --scale=$ivector_scale ark:- ark:-|' ark:- |"
  fi
  
  if [ $stage -le 1 ]; then
    $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode.JOB.log \
      nnet-latgen-faster$thread_string \
       --minimize=$minimize --max-active=$max_active --min-active=$min_active --beam=$beam \
       --lattice-beam=$lattice_beam --acoustic-scale=$acwt --allow-partial=true \
       --word-symbol-table=$graphdir/words.txt "$model" \
       $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1;
  fi
  
  if [ $stage -le 2 ]; then
    [ ! -z $iter ] && iter_opt="--iter $iter"
    steps/diagnostic/analyze_lats.sh --cmd "$cmd" $iter_opt $graphdir $dir
  fi
  
  # The output of this script is the files "lat.*.gz"-- we'll rescore this at
  # different acoustic scales to get the final output.
  
  if [ $stage -le 3 ]; then
    if ! $skip_scoring ; then
      [ ! -x local/score.sh ] && \
        echo "Not scoring because local/score.sh does not exist or not executable." && exit 1;
      echo "score best paths"
      [ "$iter" != "final" ] && iter_opt="--iter $iter"
      local/score.sh $iter_opt $scoring_opts --cmd "$cmd" $data $graphdir $dir
      echo "score confidence and timing with sclite"
    fi
  fi
  echo "Decoding done."
  exit 0;