Blame view
egs/wsj/s5/steps/nnet2/decode.sh
6.66 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
#!/bin/bash # Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey). # Apache 2.0. # This script does decoding with a neural-net. If the neural net was built on # top of fMLLR transforms from a conventional system, you should provide the # --transform-dir option. # Begin configuration section. stage=1 transform_dir= # dir to find fMLLR transforms. nj=4 # number of decoding jobs. If --transform-dir set, must match that number! acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. cmd=run.pl beam=15.0 max_active=7000 min_active=200 ivector_scale=1.0 lattice_beam=8.0 # Beam we use in lattice generation. iter=final num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # ignored now. scoring_opts= skip_scoring=false feat_type= online_ivector_dir= minimize=false # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>" echo " e.g.: $0 --transform-dir exp/tri3b/decode_dev93_tgpr \\" echo " exp/tri3b/graph_tgpr data/test_dev93 exp/tri4a_nnet/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --transform-dir <decoding-dir> # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --beam <beam> # Decoding beam; default 15.0" echo " --iter <iter> # Iteration of model to decode; default is final." echo " --scoring-opts <string> # options to local/score.sh" echo " --num-threads <n> # number of threads to use, default 1." echo " --parallel-opts <opts> # e.g. '--num-threads 4' if you supply --num-threads 4" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. model=$srcdir/$iter.mdl [ ! -z "$online_ivector_dir" ] && \ extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period" for f in $graphdir/HCLG.fst $data/feats.scp $model $extra_files; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj; cmvn_opts=`cat $srcdir/cmvn_opts` || exit 1; thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs ## Set up features. if [ -z "$feat_type" ]; then if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi echo "$0: feature type is $feat_type" fi splice_opts=`cat $srcdir/splice_opts 2>/dev/null` case $feat_type in raw) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |" if [ -f $srcdir/delta_order ]; then delta_order=`cat $srcdir/delta_order 2>/dev/null` feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |" fi ;; lda) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -s $transform_dir/num_jobs ] && \ echo "$0: expected $transform_dir/num_jobs to contain the number of jobs." && exit 1; nj_orig=$(cat $transform_dir/num_jobs) if [ $feat_type == "raw" ]; then trans=raw_trans; else trans=trans; fi if [ $feat_type == "lda" ] && \ ! cmp $transform_dir/../final.mat $srcdir/final.mat && \ ! cmp $transform_dir/final.mat $srcdir/final.mat; then echo "$0: LDA transforms differ between $srcdir and $transform_dir" exit 1; fi if [ ! -f $transform_dir/$trans.1 ]; then echo "$0: expected $transform_dir/$trans.1 to exist (--transform-dir option)" exit 1; fi if [ $nj -ne $nj_orig ]; then # Copy the transforms into an archive with an index. for n in $(seq $nj_orig); do cat $transform_dir/$trans.$n; done | \ copy-feats ark:- ark,scp:$dir/$trans.ark,$dir/$trans.scp || exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk scp:$dir/$trans.scp ark:- ark:- |" else # number of jobs matches with alignment dir. feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/$trans.JOB ark:- ark:- |" fi elif grep 'transform-feats --utt2spk' $srcdir/log/train.1.log >&/dev/null; then echo "$0: **WARNING**: you seem to be using a neural net system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## if [ ! -z "$online_ivector_dir" ]; then ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1; # note: subsample-feats, with negative n, will repeat each feature -n times. feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- | copy-matrix --scale=$ivector_scale ark:- ark:-|' ark:- |" fi if [ $stage -le 1 ]; then $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode.JOB.log \ nnet-latgen-faster$thread_string \ --minimize=$minimize --max-active=$max_active --min-active=$min_active --beam=$beam \ --lattice-beam=$lattice_beam --acoustic-scale=$acwt --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$model" \ $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi if [ $stage -le 2 ]; then [ ! -z $iter ] && iter_opt="--iter $iter" steps/diagnostic/analyze_lats.sh --cmd "$cmd" $iter_opt $graphdir $dir fi # The output of this script is the files "lat.*.gz"-- we'll rescore this at # different acoustic scales to get the final output. if [ $stage -le 3 ]; then if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; echo "score best paths" [ "$iter" != "final" ] && iter_opt="--iter $iter" local/score.sh $iter_opt $scoring_opts --cmd "$cmd" $data $graphdir $dir echo "score confidence and timing with sclite" fi fi echo "Decoding done." exit 0; |