Blame view
egs/wsj/s5/steps/nnet2/get_egs2.sh
17.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
#!/bin/bash # Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # # This script, which will generally be called from other neural-net training # scripts, extracts the training examples used to train the neural net (and also # the validation examples used for diagnostics), and puts them in separate archives. # # This script differs from get_egs.sh in that it dumps egs with several frames # of labels, controlled by the frames_per_eg config variable (default: 8). This # takes many times less disk space because typically we have 4 to 7 frames of # context on the left and right, and this ends up getting shared. This is at # the expense of slightly higher disk I/O during training time. # # We also have a simpler way of dividing the egs up into pieces, with one level # of index, so we have $dir/egs.{0,1,2,...}.ark instead of having two levels of # indexes. The extra files we write to $dir that explain the structure are # $dir/info/num_archives, which contains the number of files egs.*.ark, and # $dir/info/frames_per_eg, which contains the number of frames of labels per eg # (e.g. 7), and $dir/samples_per_archive. These replace the files # iters_per_epoch and num_jobs_nnet and egs_per_iter that the previous script # wrote to. This script takes the directory where the "egs" are located as the # argument, not the directory one level up. # Begin configuration section. cmd=run.pl feat_type= # e.g. set it to "raw" to use raw MFCC frames_per_eg=8 # number of frames of labels per example. more->less disk space and # less time preparing egs, but more I/O during training. # note: the script may reduce this if reduce_frames_per_eg is true. left_context=4 # amount of left-context per eg right_context=4 # amount of right-context per eg delta_order= # delta feature order reduce_frames_per_eg=true # If true, this script may reduce the frames_per_eg # if there is only one archive and even with the # reduced frames_pe_eg, the number of # samples_per_iter that would result is less than or # equal to the user-specified value. num_utts_subset=300 # number of utterances in validation and training # subsets used for shrinkage and diagnostics. num_valid_frames_combine=0 # #valid frames for combination weights at the very end. num_train_frames_combine=10000 # # train frames for the above. num_frames_diagnostic=4000 # number of frames for "compute_prob" jobs samples_per_iter=400000 # each iteration of training, see this many samples # per job. This is just a guideline; it will pick a number # that divides the number of samples in the entire data. transform_dir= # If supplied, overrides alidir as the place to find fMLLR transforms postdir= # If supplied, we will use posteriors in it as soft training targets. stage=0 io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. random_copy=false online_ivector_dir= # can be used if we are including speaker information as iVectors. cmvn_opts= # can be used for specifying CMVN options, if feature type is not lda (if lda, # it doesn't make sense to use different options than were used as input to the # LDA transform). This is used to turn off CMVN in the online-nnet experiments. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: $0 [opts] <data> <ali-dir> <egs-dir>" echo " e.g.: $0 data/train exp/tri3_ali exp/tri4_nnet/egs" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs." echo " --samples-per-iter <#samples;400000> # Number of samples of data to process per iteration, per" echo " # process." echo " --feat-type <lda|raw> # (by default it tries to guess). The feature type you want" echo " # to use as input to the neural net." echo " --frames-per-eg <frames;8> # number of frames per eg on disk" echo " --left-context <width;4> # Number of frames on left side to append for feature input" echo " --right-context <width;4> # Number of frames on right side to append for feature input" echo " --num-frames-diagnostic <#frames;4000> # Number of frames used in computing (train,valid) diagnostics" echo " --num-valid-frames-combine <#frames;10000> # Number of frames used in getting combination weights at the" echo " # very end." echo " --stage <stage|0> # Used to run a partially-completed training process from somewhere in" echo " # the middle." exit 1; fi data=$1 alidir=$2 dir=$3 # Check some files. [ ! -z "$online_ivector_dir" ] && \ extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period" for f in $data/feats.scp $alidir/ali.1.gz $alidir/final.mdl $alidir/tree $extra_files; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir... sdata=$data/split$nj utils/split_data.sh $data $nj mkdir -p $dir/log $dir/info cp $alidir/tree $dir num_utts=$(cat $data/utt2spk | wc -l) if ! [ $num_utts -gt $[$num_utts_subset*4] ]; then echo "$0: number of utterances $num_utts in your training data is too small versus --num-utts-subset=$num_utts_subset" echo "... you probably have so little data that it doesn't make sense to train a neural net." exit 1 fi # Get list of validation utterances. awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \ > $dir/valid_uttlist || exit 1; if [ -f $data/utt2uniq ]; then echo "File $data/utt2uniq exists, so augmenting valid_uttlist to" echo "include all perturbed versions of the same 'real' utterances." mv $dir/valid_uttlist $dir/valid_uttlist.tmp utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \ sort | uniq | utils/apply_map.pl $dir/uniq2utt | \ awk '{for(n=1;n<=NF;n++) print $n;}' | sort > $dir/valid_uttlist rm $dir/uniq2utt $dir/valid_uttlist.tmp fi awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \ utils/shuffle_list.pl | head -$num_utts_subset > $dir/train_subset_uttlist || exit 1; [ -z "$transform_dir" ] && transform_dir=$alidir ## Set up features. if [ -z $feat_type ]; then if [ -f $alidir/final.mat ] && [ ! -f $transform_dir/raw_trans.1 ]; then feat_type=lda; else feat_type=raw; fi fi echo "$0: feature type is $feat_type" case $feat_type in raw) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |" valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" echo $cmvn_opts >$dir/cmvn_opts # caution: the top-level nnet training script should copy this to its own dir now. if [ ! -z "$delta_order" ]; then feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |" valid_feats="$valid_feats add-deltas --delta-order=$delta_order ark:- ark:- |" train_subset_feats="$train_subset_feats add-deltas --delta-order=$delta_order ark:- ark:- |" echo $delta_order >$dir/delta_order fi ;; lda) splice_opts=`cat $alidir/splice_opts 2>/dev/null` # caution: the top-level nnet training script should copy these to its own dir now. cp $alidir/{splice_opts,cmvn_opts,final.mat} $dir || exit 1; [ ! -z "$cmvn_opts" ] && \ echo "You cannot supply --cmvn-opts option if feature type is LDA." && exit 1; cmvn_opts=$(cat $dir/cmvn_opts) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ -f $transform_dir/trans.1 ] && [ $feat_type != "raw" ]; then echo "$0: using transforms from $transform_dir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/trans.JOB ark:- ark:- |" valid_feats="$valid_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/trans.*|' ark:- ark:- |" train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/trans.*|' ark:- ark:- |" fi if [ -f $transform_dir/raw_trans.1 ] && [ $feat_type == "raw" ]; then echo "$0: using raw-fMLLR transforms from $transform_dir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/raw_trans.JOB ark:- ark:- |" valid_feats="$valid_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/raw_trans.*|' ark:- ark:- |" train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/raw_trans.*|' ark:- ark:- |" fi if [ ! -z "$online_ivector_dir" ]; then feats_one="$(echo "$feats" | sed s:JOB:1:g)" ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1; echo $ivector_dim > $dir/info/ivector_dim ivectors_opt="--const-feat-dim=$ivector_dim" ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1; feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |" valid_feats="$valid_feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |" train_subset_feats="$train_subset_feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |" else echo 0 >$dir/info/ivector_dim fi if [ $stage -le 0 ]; then echo "$0: working out number of frames of training data" num_frames=$(steps/nnet2/get_num_frames.sh $data) echo $num_frames > $dir/info/num_frames else num_frames=`cat $dir/info/num_frames` || exit 1; fi # the + 1 is to round up, not down... we assume it doesn't divide exactly. num_archives=$[$num_frames/($frames_per_eg*$samples_per_iter)+1] # (for small data)- while reduce_frames_per_eg == true and the number of # archives is 1 and would still be 1 if we reduced frames_per_eg by 1, reduce it # by 1. reduced=false while $reduce_frames_per_eg && [ $frames_per_eg -gt 1 ] && \ [ $[$num_frames/(($frames_per_eg-1)*$samples_per_iter)] -eq 0 ]; do frames_per_eg=$[$frames_per_eg-1] num_archives=1 reduced=true done $reduced && echo "$0: reduced frames_per_eg to $frames_per_eg because amount of data is small." echo $num_archives >$dir/info/num_archives echo $frames_per_eg >$dir/info/frames_per_eg # Working out number of egs per archive egs_per_archive=$[$num_frames/($frames_per_eg*$num_archives)] ! [ $egs_per_archive -le $samples_per_iter ] && \ echo "$0: script error: egs_per_archive=$egs_per_archive not <= samples_per_iter=$samples_per_iter" \ && exit 1; echo $egs_per_archive > $dir/info/egs_per_archive echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with" echo "$0: $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)" # Making soft links to storage directories. This is a no-up unless # the subdirectory $dir/storage/ exists. See utils/create_split_dir.pl for x in `seq $num_archives`; do utils/create_data_link.pl $dir/egs.$x.ark for y in `seq $nj`; do utils/create_data_link.pl $dir/egs_orig.$x.$y.ark done done nnet_context_opts="--left-context=$left_context --right-context=$right_context" echo $left_context > $dir/info/left_context echo $right_context > $dir/info/right_context if [ $stage -le 2 ]; then echo "$0: Getting validation and training subset examples." rm $dir/.error 2>/dev/null echo "$0: ... extracting validation and training-subset alignments." set -o pipefail; for id in $(seq $nj); do gunzip -c $alidir/ali.$id.gz; done | \ copy-int-vector ark:- ark,t:- | \ utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) | \ gzip -c >$dir/ali_special.gz || exit 1; set +o pipefail; # unset the pipefail option. $cmd $dir/log/create_valid_subset.log \ nnet-get-egs $ivectors_opt $nnet_context_opts "$valid_feats" \ "ark,s,cs:gunzip -c $dir/ali_special.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \ "ark:$dir/valid_all.egs" || touch $dir/.error & $cmd $dir/log/create_train_subset.log \ nnet-get-egs $ivectors_opt $nnet_context_opts "$train_subset_feats" \ "ark,s,cs:gunzip -c $dir/ali_special.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \ "ark:$dir/train_subset_all.egs" || touch $dir/.error & wait; [ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1 echo "... Getting subsets of validation examples for diagnostics and combination." $cmd $dir/log/create_valid_subset_combine.log \ nnet-subset-egs --n=$num_valid_frames_combine ark:$dir/valid_all.egs \ ark:$dir/valid_combine.egs || touch $dir/.error & $cmd $dir/log/create_valid_subset_diagnostic.log \ nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/valid_all.egs \ ark:$dir/valid_diagnostic.egs || touch $dir/.error & $cmd $dir/log/create_train_subset_combine.log \ nnet-subset-egs --n=$num_train_frames_combine ark:$dir/train_subset_all.egs \ ark:$dir/train_combine.egs || touch $dir/.error & $cmd $dir/log/create_train_subset_diagnostic.log \ nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/train_subset_all.egs \ ark:$dir/train_diagnostic.egs || touch $dir/.error & wait sleep 5 # wait for file system to sync. cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs for f in $dir/{combine,train_diagnostic,valid_diagnostic}.egs; do [ ! -s $f ] && echo "No examples in file $f" && exit 1; done rm $dir/valid_all.egs $dir/train_subset_all.egs $dir/{train,valid}_combine.egs $dir/ali_special.gz fi if [ $stage -le 3 ]; then # create egs_orig.*.*.ark; the first index goes to $num_archives, # the second to $nj (which is the number of jobs in the original alignment # dir) egs_list= for n in $(seq $num_archives); do egs_list="$egs_list ark:$dir/egs_orig.$n.JOB.ark" done echo "$0: Generating training examples on disk" # The examples will go round-robin to egs_list. if [ ! -z $postdir ]; then $cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \ nnet-get-egs $ivectors_opt $nnet_context_opts --num-frames=$frames_per_eg "$feats" \ scp:$postdir/post.JOB.scp ark:- \| \ nnet-copy-egs ark:- $egs_list || exit 1; else $cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \ nnet-get-egs $ivectors_opt $nnet_context_opts --num-frames=$frames_per_eg "$feats" \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" ark:- \| \ nnet-copy-egs ark:- $egs_list || exit 1; fi fi if [ $stage -le 4 ]; then echo "$0: recombining and shuffling order of archives on disk" # combine all the "egs_orig.JOB.*.scp" (over the $nj splits of the data) and # shuffle the order, writing to the egs.JOB.ark egs_list= for n in $(seq $nj); do egs_list="$egs_list $dir/egs_orig.JOB.$n.ark" done $cmd $io_opts $extra_opts JOB=1:$num_archives $dir/log/shuffle.JOB.log \ nnet-shuffle-egs --srand=JOB "ark:cat $egs_list|" ark:$dir/egs.JOB.ark || exit 1; fi if [ $stage -le 5 ]; then echo "$0: removing temporary archives" for x in `seq $num_archives`; do for y in `seq $nj`; do file=$dir/egs_orig.$x.$y.ark [ -L $file ] && rm $(utils/make_absolute.sh $file) rm $file done done fi echo "$0: Finished preparing training examples" |