Blame view

egs/wsj/s5/steps/nnet2/get_egs2.sh 17.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  #!/bin/bash
  
  # Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  #
  # This script, which will generally be called from other neural-net training
  # scripts, extracts the training examples used to train the neural net (and also
  # the validation examples used for diagnostics), and puts them in separate archives.
  #
  # This script differs from get_egs.sh in that it dumps egs with several frames
  # of labels, controlled by the frames_per_eg config variable (default: 8).  This
  # takes many times less disk space because typically we have 4 to 7 frames of
  # context on the left and right, and this ends up getting shared.  This is at
  # the expense of slightly higher disk I/O during training time.
  #
  # We also have a simpler way of dividing the egs up into pieces, with one level
  # of index, so we have $dir/egs.{0,1,2,...}.ark instead of having two levels of
  # indexes.  The extra files we write to $dir that explain the structure are
  # $dir/info/num_archives, which contains the number of files egs.*.ark, and
  # $dir/info/frames_per_eg, which contains the number of frames of labels per eg
  # (e.g. 7), and $dir/samples_per_archive.  These replace the files
  # iters_per_epoch and num_jobs_nnet and egs_per_iter that the previous script
  # wrote to.  This script takes the directory where the "egs" are located as the
  # argument, not the directory one level up.
  
  # Begin configuration section.
  cmd=run.pl
  feat_type=          # e.g. set it to "raw" to use raw MFCC
  frames_per_eg=8   # number of frames of labels per example.  more->less disk space and
                    # less time preparing egs, but more I/O during training.
                    # note: the script may reduce this if reduce_frames_per_eg is true.
  left_context=4    # amount of left-context per eg
  right_context=4   # amount of right-context per eg
  delta_order=      # delta feature order
  
  reduce_frames_per_eg=true  # If true, this script may reduce the frames_per_eg
                             # if there is only one archive and even with the
                             # reduced frames_pe_eg, the number of
                             # samples_per_iter that would result is less than or
                             # equal to the user-specified value.
  num_utts_subset=300     # number of utterances in validation and training
                          # subsets used for shrinkage and diagnostics.
  num_valid_frames_combine=0 # #valid frames for combination weights at the very end.
  num_train_frames_combine=10000 # # train frames for the above.
  num_frames_diagnostic=4000 # number of frames for "compute_prob" jobs
  samples_per_iter=400000 # each iteration of training, see this many samples
                          # per job.  This is just a guideline; it will pick a number
                          # that divides the number of samples in the entire data.
  
  transform_dir=     # If supplied, overrides alidir as the place to find fMLLR transforms
  postdir=        # If supplied, we will use posteriors in it as soft training targets.
  
  stage=0
  io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.
  random_copy=false
  online_ivector_dir=  # can be used if we are including speaker information as iVectors.
  cmvn_opts=  # can be used for specifying CMVN options, if feature type is not lda (if lda,
              # it doesn't make sense to use different options than were used as input to the
              # LDA transform).  This is used to turn off CMVN in the online-nnet experiments.
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  
  if [ $# != 3 ]; then
    echo "Usage: $0 [opts] <data> <ali-dir> <egs-dir>"
    echo " e.g.: $0 data/train exp/tri3_ali exp/tri4_nnet/egs"
    echo ""
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --samples-per-iter <#samples;400000>             # Number of samples of data to process per iteration, per"
    echo "                                                   # process."
    echo "  --feat-type <lda|raw>                            # (by default it tries to guess).  The feature type you want"
    echo "                                                   # to use as input to the neural net."
    echo "  --frames-per-eg <frames;8>                       # number of frames per eg on disk"
    echo "  --left-context <width;4>                         # Number of frames on left side to append for feature input"
    echo "  --right-context <width;4>                        # Number of frames on right side to append for feature input"
    echo "  --num-frames-diagnostic <#frames;4000>           # Number of frames used in computing (train,valid) diagnostics"
    echo "  --num-valid-frames-combine <#frames;10000>       # Number of frames used in getting combination weights at the"
    echo "                                                   # very end."
    echo "  --stage <stage|0>                                # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."
  
    exit 1;
  fi
  
  data=$1
  alidir=$2
  dir=$3
  
  
  # Check some files.
  [ ! -z "$online_ivector_dir" ] && \
    extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"
  
  for f in $data/feats.scp $alidir/ali.1.gz $alidir/final.mdl $alidir/tree $extra_files; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  
  nj=`cat $alidir/num_jobs` || exit 1;  # number of jobs in alignment dir...
  
  sdata=$data/split$nj
  utils/split_data.sh $data $nj
  
  mkdir -p $dir/log $dir/info
  cp $alidir/tree $dir
  
  num_utts=$(cat $data/utt2spk | wc -l)
  if ! [ $num_utts -gt $[$num_utts_subset*4] ]; then
    echo "$0: number of utterances $num_utts in your training data is too small versus --num-utts-subset=$num_utts_subset"
    echo "... you probably have so little data that it doesn't make sense to train a neural net."
    exit 1
  fi
  
  # Get list of validation utterances.
  awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \
      > $dir/valid_uttlist || exit 1;
  
  if [ -f $data/utt2uniq ]; then
    echo "File $data/utt2uniq exists, so augmenting valid_uttlist to"
    echo "include all perturbed versions of the same 'real' utterances."
    mv $dir/valid_uttlist $dir/valid_uttlist.tmp
    utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt
    cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \
      sort | uniq | utils/apply_map.pl $dir/uniq2utt | \
      awk '{for(n=1;n<=NF;n++) print $n;}' | sort  > $dir/valid_uttlist
    rm $dir/uniq2utt $dir/valid_uttlist.tmp
  fi
  
  awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \
     utils/shuffle_list.pl | head -$num_utts_subset > $dir/train_subset_uttlist || exit 1;
  
  [ -z "$transform_dir" ] && transform_dir=$alidir
  
  ## Set up features.
  if [ -z $feat_type ]; then
    if [ -f $alidir/final.mat ] && [ ! -f $transform_dir/raw_trans.1 ]; then feat_type=lda; else feat_type=raw; fi
  fi
  echo "$0: feature type is $feat_type"
  
  case $feat_type in
    raw) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |"
      valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
      train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
      echo $cmvn_opts >$dir/cmvn_opts # caution: the top-level nnet training script should copy this to its own dir now.
      if [ ! -z "$delta_order" ]; then
        feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |"
        valid_feats="$valid_feats add-deltas --delta-order=$delta_order ark:- ark:- |"
        train_subset_feats="$train_subset_feats add-deltas --delta-order=$delta_order ark:- ark:- |"
        echo $delta_order >$dir/delta_order
      fi
     ;;
    lda)
      splice_opts=`cat $alidir/splice_opts 2>/dev/null`
      # caution: the top-level nnet training script should copy these to its own dir now.
      cp $alidir/{splice_opts,cmvn_opts,final.mat} $dir || exit 1;
      [ ! -z "$cmvn_opts" ] && \
         echo "You cannot supply --cmvn-opts option if feature type is LDA." && exit 1;
      cmvn_opts=$(cat $dir/cmvn_opts)
      feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
      valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
      train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
      ;;
    *) echo "$0: invalid feature type $feat_type" && exit 1;
  esac
  
  if [ -f $transform_dir/trans.1 ] && [ $feat_type != "raw" ]; then
    echo "$0: using transforms from $transform_dir"
    feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/trans.JOB ark:- ark:- |"
    valid_feats="$valid_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/trans.*|' ark:- ark:- |"
    train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/trans.*|' ark:- ark:- |"
  fi
  if [ -f $transform_dir/raw_trans.1 ] && [ $feat_type == "raw" ]; then
    echo "$0: using raw-fMLLR transforms from $transform_dir"
    feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/raw_trans.JOB ark:- ark:- |"
    valid_feats="$valid_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/raw_trans.*|' ark:- ark:- |"
    train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $transform_dir/raw_trans.*|' ark:- ark:- |"
  fi
  if [ ! -z "$online_ivector_dir" ]; then
    feats_one="$(echo "$feats" | sed s:JOB:1:g)"
    ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
    echo $ivector_dim > $dir/info/ivector_dim
    ivectors_opt="--const-feat-dim=$ivector_dim"
    ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
    feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |"
    valid_feats="$valid_feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |"
    train_subset_feats="$train_subset_feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |"
  else
    echo 0 >$dir/info/ivector_dim
  fi
  
  if [ $stage -le 0 ]; then
    echo "$0: working out number of frames of training data"
    num_frames=$(steps/nnet2/get_num_frames.sh $data)
    echo $num_frames > $dir/info/num_frames
  else
    num_frames=`cat $dir/info/num_frames` || exit 1;
  fi
  
  # the + 1 is to round up, not down... we assume it doesn't divide exactly.
  num_archives=$[$num_frames/($frames_per_eg*$samples_per_iter)+1]
  # (for small data)- while reduce_frames_per_eg == true and the number of
  # archives is 1 and would still be 1 if we reduced frames_per_eg by 1, reduce it
  # by 1.
  reduced=false
  while $reduce_frames_per_eg && [ $frames_per_eg -gt 1 ] && \
    [ $[$num_frames/(($frames_per_eg-1)*$samples_per_iter)] -eq 0 ]; do
    frames_per_eg=$[$frames_per_eg-1]
    num_archives=1
    reduced=true
  done
  $reduced && echo "$0: reduced frames_per_eg to $frames_per_eg because amount of data is small."
  
  echo $num_archives >$dir/info/num_archives
  echo $frames_per_eg >$dir/info/frames_per_eg
  
  # Working out number of egs per archive
  egs_per_archive=$[$num_frames/($frames_per_eg*$num_archives)]
  ! [ $egs_per_archive -le $samples_per_iter ] && \
    echo "$0: script error: egs_per_archive=$egs_per_archive not <= samples_per_iter=$samples_per_iter" \
    && exit 1;
  
  echo $egs_per_archive > $dir/info/egs_per_archive
  
  echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with"
  echo "$0:   $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)"
  
  # Making soft links to storage directories.  This is a no-up unless
  # the subdirectory $dir/storage/ exists.  See utils/create_split_dir.pl
  for x in `seq $num_archives`; do
    utils/create_data_link.pl $dir/egs.$x.ark
    for y in `seq $nj`; do
      utils/create_data_link.pl $dir/egs_orig.$x.$y.ark
    done
  done
  
  nnet_context_opts="--left-context=$left_context --right-context=$right_context"
  
  echo $left_context > $dir/info/left_context
  echo $right_context > $dir/info/right_context
  if [ $stage -le 2 ]; then
    echo "$0: Getting validation and training subset examples."
    rm $dir/.error 2>/dev/null
    echo "$0: ... extracting validation and training-subset alignments."
    set -o pipefail;
    for id in $(seq $nj); do gunzip -c $alidir/ali.$id.gz; done | \
      copy-int-vector ark:- ark,t:- | \
      utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) | \
      gzip -c >$dir/ali_special.gz || exit 1;
    set +o pipefail; # unset the pipefail option.
  
    $cmd $dir/log/create_valid_subset.log \
      nnet-get-egs $ivectors_opt $nnet_context_opts "$valid_feats" \
      "ark,s,cs:gunzip -c $dir/ali_special.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \
       "ark:$dir/valid_all.egs" || touch $dir/.error &
    $cmd $dir/log/create_train_subset.log \
      nnet-get-egs $ivectors_opt $nnet_context_opts "$train_subset_feats" \
       "ark,s,cs:gunzip -c $dir/ali_special.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \
       "ark:$dir/train_subset_all.egs" || touch $dir/.error &
    wait;
    [ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1
    echo "... Getting subsets of validation examples for diagnostics and combination."
    $cmd $dir/log/create_valid_subset_combine.log \
      nnet-subset-egs --n=$num_valid_frames_combine ark:$dir/valid_all.egs \
          ark:$dir/valid_combine.egs || touch $dir/.error &
    $cmd $dir/log/create_valid_subset_diagnostic.log \
      nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/valid_all.egs \
      ark:$dir/valid_diagnostic.egs || touch $dir/.error &
  
    $cmd $dir/log/create_train_subset_combine.log \
      nnet-subset-egs --n=$num_train_frames_combine ark:$dir/train_subset_all.egs \
      ark:$dir/train_combine.egs || touch $dir/.error &
    $cmd $dir/log/create_train_subset_diagnostic.log \
      nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/train_subset_all.egs \
      ark:$dir/train_diagnostic.egs || touch $dir/.error &
    wait
    sleep 5  # wait for file system to sync.
    cat $dir/valid_combine.egs $dir/train_combine.egs > $dir/combine.egs
  
    for f in $dir/{combine,train_diagnostic,valid_diagnostic}.egs; do
      [ ! -s $f ] && echo "No examples in file $f" && exit 1;
    done
    rm $dir/valid_all.egs $dir/train_subset_all.egs $dir/{train,valid}_combine.egs $dir/ali_special.gz
  fi
  
  if [ $stage -le 3 ]; then
    # create egs_orig.*.*.ark; the first index goes to $num_archives,
    # the second to $nj (which is the number of jobs in the original alignment
    # dir)
  
    egs_list=
    for n in $(seq $num_archives); do
      egs_list="$egs_list ark:$dir/egs_orig.$n.JOB.ark"
    done
    echo "$0: Generating training examples on disk"
    # The examples will go round-robin to egs_list.
    if [ ! -z $postdir ]; then
      $cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \
        nnet-get-egs $ivectors_opt $nnet_context_opts --num-frames=$frames_per_eg "$feats" \
        scp:$postdir/post.JOB.scp ark:- \| \
        nnet-copy-egs ark:- $egs_list || exit 1;
    else
      $cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \
        nnet-get-egs $ivectors_opt $nnet_context_opts --num-frames=$frames_per_eg "$feats" \
        "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" ark:- \| \
        nnet-copy-egs ark:- $egs_list || exit 1;
    fi
  fi
  if [ $stage -le 4 ]; then
    echo "$0: recombining and shuffling order of archives on disk"
    # combine all the "egs_orig.JOB.*.scp" (over the $nj splits of the data) and
    # shuffle the order, writing to the egs.JOB.ark
  
    egs_list=
    for n in $(seq $nj); do
      egs_list="$egs_list $dir/egs_orig.JOB.$n.ark"
    done
  
    $cmd $io_opts $extra_opts JOB=1:$num_archives $dir/log/shuffle.JOB.log \
      nnet-shuffle-egs --srand=JOB "ark:cat $egs_list|" ark:$dir/egs.JOB.ark  || exit 1;
  fi
  
  if [ $stage -le 5 ]; then
    echo "$0: removing temporary archives"
    for x in `seq $num_archives`; do
      for y in `seq $nj`; do
        file=$dir/egs_orig.$x.$y.ark
        [ -L $file ] && rm $(utils/make_absolute.sh $file)
        rm $file
      done
    done
  fi
  
  echo "$0: Finished preparing training examples"