Blame view

egs/wsj/s5/steps/nnet2/get_egs_discriminative2.sh 14.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  #!/bin/bash
  
  # Copyright 2012  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  
  # This script dumps examples MPE or MMI or state-level minimum bayes risk (sMBR)
  # training of neural nets.  Note: for "criterion", smbr > mpe > mmi in terms of
  # compatibility of the dumped egs, meaning you can use the egs dumped with
  # --criterion smbr for MPE or MMI, and egs dumped with --criterion mpe for MMI
  # training.  The discriminative training program itself doesn't enforce this and
  # it would let you mix and match them arbitrarily; we area speaking in terms of
  # the correctness of the algorithm that splits the lattices into pieces.
  
  # Begin configuration section.
  cmd=run.pl
  criterion=smbr
  drop_frames=false #  option relevant for MMI, affects how we dump examples.
  samples_per_iter=400000 # measured in frames, not in "examples"
  max_temp_archives=128 # maximum number of temp archives per input job, only
                        # affects the process of generating archives, not the
                        # final result.
  
  stage=0
  
  cleanup=true
  transform_dir= # If this is a SAT system, directory for transforms
  online_ivector_dir=
  
  num_utts_subset=3000
  num_archives_priors=10
  
  # End configuration section.
  
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  
  if [ $# != 6 ]; then
    echo "Usage: $0 [opts] <data> <lang> <ali-dir> <denlat-dir> <src-model-file> <degs-dir>"
    echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet_denlats exp/tri4/final.mdl exp/tri4_mpe/degs"
    echo ""
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs (probably would be good to add --max-jobs-run 5 or so if using"
    echo "                                                   # GridEngine (to avoid excessive NFS traffic)."
    echo "  --samples-per-iter <#samples|400000>             # Number of samples of data to process per iteration, per"
    echo "                                                   # process."
    echo "  --stage <stage|-8>                               # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."
    echo "  --criterion <criterion|smbr>                     # Training criterion: may be smbr, mmi or mpfe"
    echo "  --online-ivector-dir <dir|"">                    # Directory for online-estimated iVectors, used in the"
    echo "                                                   # online-neural-net setup.  (but you may want to use"
    echo "                                                   # steps/online/nnet2/get_egs_discriminative2.sh instead)"
    exit 1;
  fi
  
  data=$1
  lang=$2
  alidir=$3
  denlatdir=$4
  src_model=$5
  dir=$6
  
  
  extra_files=
  [ ! -z $online_ivector_dir ] && \
    extra_files="$online_ivector_dir/ivector_period $online_ivector_dir/ivector_online.scp"
  
  # Check some files.
  for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/num_jobs $alidir/tree \
           $denlatdir/lat.1.gz $denlatdir/num_jobs $src_model $extra_files; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  mkdir -p $dir/log $dir/info || exit 1;
  
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
  
  nj=$(cat $denlatdir/num_jobs) || exit 1; # $nj is the number of
                                           # splits of the denlats and alignments.
  
  nj_ali=$(cat $alidir/num_jobs) || exit 1;
  
  sdata=$data/split$nj
  utils/split_data.sh $data $nj
  
  if [ $nj_ali -eq $nj ]; then
    ali_rspecifier="ark,s,cs:gunzip -c $alidir/ali.JOB.gz |"
    alis=$(for n in $(seq $nj); do echo -n "$alidir/ali.$n.gz "; done)
    prior_ali_rspecifier="ark,s,cs:gunzip -c $alis | copy-int-vector ark:- ark,t:- | utils/filter_scp.pl $dir/priors_uttlist | ali-to-pdf $alidir/final.mdl ark,t:- ark:- |"
  else
    ali_rspecifier="scp:$dir/ali.scp"
    prior_ali_rspecifier="ark,s,cs:utils/filter_scp.pl $dir/priors_uttlist $dir/ali.scp | ali-to-pdf $alidir/final.mdl scp:- ark:- |"
    if [ $stage -le 1 ]; then
      echo "$0: number of jobs in den-lats versus alignments differ: dumping them as single archive and index."
      alis=$(for n in $(seq $nj_ali); do echo -n "$alidir/ali.$n.gz "; done)
      $cmd $dir/log/copy_alignments.log \
        copy-int-vector "ark:gunzip -c $alis|" \
        ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1;
    fi
  fi
  
  splice_opts=`cat $alidir/splice_opts 2>/dev/null`
  silphonelist=`cat $lang/phones/silence.csl` || exit 1;
  cmvn_opts=`cat $alidir/cmvn_opts 2>/dev/null`
  cp $alidir/splice_opts $dir 2>/dev/null
  cp $alidir/cmvn_opts $dir 2>/dev/null
  cp $alidir/tree $dir
  cp $lang/phones/silence.csl $dir/info/
  cp $src_model $dir/final.mdl || exit 1
  
  if [ ! -z "$online_ivector_dir" ]; then
    ivector_period=$(cat $online_ivector_dir/ivector_period)
    ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1;
    echo $ivector_dim >$dir/info/ivector_dim
    # the 'const_dim_opt' allows it to write only one iVector per example,
    # rather than one per time-index... it has to average over
    const_dim_opt="--const-feat-dim=$ivector_dim"
  else
    echo 0 > $dir/info/ivector_dim
  fi
  
  # Get list of validation utterances.
  awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \
      > $dir/priors_uttlist || exit 1;
  
  ## We don't support deltas here, only LDA or raw (mainly because deltas are less
  ## frequently used).
  if [ -z $feat_type ]; then
    if [ -f $alidir/final.mat ] && [ ! -f $transform_dir/raw_trans.1 ]; then feat_type=lda; else feat_type=raw; fi
  fi
  echo "$0: feature type is $feat_type"
  
  case $feat_type in
    raw) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
      priors_feats="ark,s,cs:utils/filter_scp.pl $dir/priors_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |"
     ;;
    lda)
      splice_opts=`cat $alidir/splice_opts 2>/dev/null`
      cp $alidir/final.mat $dir
      feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
      priors_feats="ark,s,cs:utils/filter_scp.pl $dir/priors_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
      ;;
    *) echo "$0: invalid feature type $feat_type" && exit 1;
  esac
  
  if [ -z "$transform_dir" ]; then
    if [ -f $transform_dir/trans.1 ] || [ -f $transform_dir/raw_trans.1 ]; then
      transform_dir=$alidir
    fi
  fi
  
  if [ ! -z "$transform_dir" ]; then
    echo "$0: using transforms from $transform_dir"
    [ ! -s $transform_dir/num_jobs ] && \
      echo "$0: expected $transform_dir/num_jobs to contain the number of jobs." && exit 1;
    nj_orig=$(cat $transform_dir/num_jobs)
  
    if [ $feat_type == "raw" ]; then trans=raw_trans;
    else trans=trans; fi
    if [ $feat_type == "lda" ] && ! cmp $transform_dir/final.mat $alidir/final.mat; then
      echo "$0: LDA transforms differ between $alidir and $transform_dir"
      exit 1;
    fi
    if [ ! -f $transform_dir/$trans.1 ]; then
      echo "$0: expected $transform_dir/$trans.1 to exist (--transform-dir option)"
      exit 1;
    fi
    if [ $nj -ne $nj_orig ]; then
      # Copy the transforms into an archive with an index.
      for n in $(seq $nj_orig); do cat $transform_dir/$trans.$n; done | \
        copy-feats ark:- ark,scp:$dir/$trans.ark,$dir/$trans.scp || exit 1;
      feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk scp:$dir/$trans.scp ark:- ark:- |"
      priors_feats="$priors_feats transform-feats --utt2spk=ark:$data/utt2spk scp:$dir/$trans.scp ark:- ark:- |"
    else
      # number of jobs matches with alignment dir.
      feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/$trans.JOB ark:- ark:- |"
      tras=$(for n in $(seq $nj); do echo -n "$transform_dir/$trans.$n "; done)
      priors_feats="$priors_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $tras |' ark:- ark:- |"
    fi
  fi
  if [ ! -z $online_ivector_dir ]; then
    # add iVectors to the features.
    feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |"
    priors_feats="$priors_feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $dir/priors_uttlist $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |"
  fi
  
  
  if [ $stage -le 2 ]; then
    echo "$0: working out number of frames of training data"
    num_frames=$(steps/nnet2/get_num_frames.sh $data)
  
    echo $num_frames > $dir/info/num_frames
  
    # Working out total number of archives. Add one on the assumption the
    # num-frames won't divide exactly, and we want to round up.
    num_archives=$[$num_frames/$samples_per_iter + 1]
  
    # the next few lines relate to how we may temporarily split each input job
    # into fewer than $num_archives pieces, to avoid using an excessive
    # number of filehandles.
    archive_ratio=$[$num_archives/$max_temp_archives+1]
    num_archives_temp=$[$num_archives/$archive_ratio]
    # change $num_archives slightly to make it an exact multiple
    # of $archive_ratio.
    num_archives=$[$num_archives_temp*$archive_ratio]
  
    echo $num_archives >$dir/info/num_archives || exit 1
    echo $num_archives_temp >$dir/info/num_archives_temp || exit 1
  
    frames_per_archive=$[$num_frames/$num_archives]
  
    # note, this is the number of frames per archive prior to discarding frames.
    echo $frames_per_archive > $dir/info/frames_per_archive
  else
    num_archives=$(cat $dir/info/num_archives) || exit 1;
    num_archives_temp=$(cat $dir/info/num_archives_temp) || exit 1;
    frames_per_archive=$(cat $dir/info/frames_per_archive) || exit 1;
  fi
  
  echo "$0: Splitting the data up into $num_archives archives (using $num_archives_temp temporary pieces per input job)"
  echo "$0: giving samples-per-iteration of $frames_per_archive (you requested $samples_per_iter)."
  
  # we create these data links regardless of the stage, as there are situations
  # where we would want to recreate a data link that had previously been deleted.
  
  if [ -d $dir/storage ]; then
    echo "$0: creating data links for distributed storage of degs"
    # See utils/create_split_dir.pl for how this 'storage' directory is created.
    for x in $(seq $nj); do
      for y in $(seq $num_archives_temp); do
        utils/create_data_link.pl $dir/degs_orig.$x.$y.ark
      done
    done
    for z in $(seq $num_archives); do
      utils/create_data_link.pl $dir/degs.$z.ark
    done
    if [ $num_archives_temp -ne $num_archives ]; then
      for z in $(seq $num_archives); do
        utils/create_data_link.pl $dir/degs_temp.$z.ark
      done
    fi
  fi
  
  rm $dir/.error 2>/dev/null
  left_context=$(nnet-am-info $dir/final.mdl | grep '^left-context' | awk '{print $2}') || exit 1
  right_context=$(nnet-am-info $dir/final.mdl | grep '^right-context' | awk '{print $2}') || exit 1
  
  (
  
  if [ $stage -le 10 ]; then
  
  priors_egs_list=
  for y in `seq $num_archives_priors`; do
    utils/create_data_link.pl $dir/priors_egs.$y.ark
    priors_egs_list="$priors_egs_list ark:$dir/priors_egs.$y.ark"
  done
  
  nnet_context_opts="--left-context=$left_context --right-context=$right_context"
  
  echo "$0: dumping egs for prior adjustment in the background."
  
  $cmd $dir/log/create_priors_subset.log \
    nnet-get-egs $ivectors_opt $nnet_context_opts "$priors_feats" \
    "$prior_ali_rspecifier ali-to-post ark:- ark:- |" \
    ark:- \| nnet-copy-egs ark:- $priors_egs_list || \
    { touch $dir/.error; echo "Error in creating priors subset. See $dir/log/create_priors_subset.log"; exit 1; }
  
  sleep 3;
  
  echo $num_archives_priors >$dir/info/num_archives_priors
  
  fi
  
  ) &
  
  if [ $stage -le 3 ]; then
    echo "$0: getting initial training examples by splitting lattices"
  
    degs_list=$(for n in $(seq $num_archives_temp); do echo -n "ark:$dir/degs_orig.JOB.$n.ark "; done)
  
    $cmd JOB=1:$nj $dir/log/get_egs.JOB.log \
      nnet-get-egs-discriminative --criterion=$criterion --drop-frames=$drop_frames \
        "$src_model" "$feats" "$ali_rspecifier" "ark,s,cs:gunzip -c $denlatdir/lat.JOB.gz|" ark:- \| \
      nnet-copy-egs-discriminative $const_dim_opt ark:- $degs_list || exit 1;
    sleep 5;  # wait a bit so NFS has time to write files.
  fi
  
  if [ $stage -le 4 ]; then
  
    degs_list=$(for n in $(seq $nj); do echo -n "$dir/degs_orig.$n.JOB.ark "; done)
  
    if [ $num_archives -eq $num_archives_temp ]; then
      echo "$0: combining data into final archives and shuffling it"
  
      $cmd JOB=1:$num_archives $dir/log/shuffle.JOB.log \
        cat $degs_list \| nnet-shuffle-egs-discriminative --srand=JOB ark:- \
         ark:$dir/degs.JOB.ark || exit 1;
    else
      echo "$0: combining and re-splitting data into un-shuffled versions of final archives."
  
      archive_ratio=$[$num_archives/$num_archives_temp]
      ! [ $archive_ratio -gt 1 ] && echo "$0: Bad archive_ratio $archive_ratio" && exit 1;
  
      # note: the \$[ .. ] won't be evaluated until the job gets executed.  The
      # aim is to write to the archives with the final numbering, 1
      # ... num_archives, which is more than num_archives_temp.  The list with
      # \$[... ] expressions in it computes the set of final indexes for each
      # temporary index.
      degs_list_out=$(for n in $(seq $archive_ratio); do echo -n "ark:$dir/degs_temp.\$[((JOB-1)*$archive_ratio)+$n].ark "; done)
      # e.g. if dir=foo and archive_ratio=2, we'd have
      # degs_list_out='foo/degs_temp.$[((JOB-1)*2)+1].ark foo/degs_temp.$[((JOB-1)*2)+2].ark'
  
      $cmd JOB=1:$num_archives_temp $dir/log/resplit.JOB.log \
        cat $degs_list \| nnet-copy-egs-discriminative --srand=JOB ark:- \
        $degs_list_out || exit 1;
    fi
  fi
  
  if [ $stage -le 5 ] && [ $num_archives -ne $num_archives_temp ]; then
    echo "$0: shuffling final archives."
  
    $cmd JOB=1:$num_archives $dir/log/shuffle.JOB.log \
      nnet-shuffle-egs-discriminative --srand=JOB ark:$dir/degs_temp.JOB.ark \
        ark:$dir/degs.JOB.ark || exit 1
  fi
  
  wait;
  [ -f $dir/.error ] && echo "Error detected while creating priors adjustment egs" && exit 1
  
  if $cleanup; then
    echo "$0: removing temporary archives."
    for x in $(seq $nj); do
      for y in $(seq $num_archives_temp); do
        file=$dir/degs_orig.$x.$y.ark
        [ -L $file ] && rm $(utils/make_absolute.sh $file); rm $file
      done
    done
    if [ $num_archives_temp -ne $num_archives ]; then
      for z in $(seq $num_archives); do
        file=$dir/degs_temp.$z.ark
        [ -L $file ] && rm $(utils/make_absolute.sh $file); rm $file
      done
    fi
  fi
  
  echo "$0: Done."