Blame view

egs/wsj/s5/steps/nnet2/retrain_fast.sh 18.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  #!/bin/bash
  
  # Copyright 2014  Johns Hopkins University (Author: Daniel Povey).
  # Apache 2.0.
  
  # retrain_fast.sh is a neural net training script that's intended to train
  # a system on top of an already-trained neural network, whose activations have
  # been dumped to disk.  All it really is is training a neural network with
  # no hidden layers, so it's a simplified version of some of the other scripts.
  # There is no get_lda stage, as we don't support any pre-scaling of the inputs.
  # It uses the AffineComponentPreconditionedOnline components, which is why
  # we name it _fast.
  
  # Begin configuration section.
  cmd=run.pl
  num_epochs=4       # Number of epochs during which we reduce
                     # the learning rate; number of iterations is worked out from this.
  num_epochs_extra=1 # Number of epochs after we stop reducing
                     # the learning rate.
  num_iters_final=10 # Maximum number of final iterations to give to the
                     # optimization over the validation set (maximum)
  initial_learning_rate=0.04
  final_learning_rate=0.004
  
  minibatch_size=128 # by default use a smallish minibatch size for neural net
                     # training; this controls instability which would otherwise
                     # be a problem with multi-threaded update.
  samples_per_iter=200000 # each iteration of training, see this many samples
                          # per job.  This option is passed to get_egs.sh
  num_jobs_nnet=16   # Number of neural net jobs to run in parallel.  This option
                     # is passed to get_egs.sh.
  get_egs_stage=0
  
  shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                  # on each iter.  You could set it to 0 or to a large value for complete
                  # randomization, but this would both consume memory and cause spikes in
                  # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                  # not a huge deal though, as samples are anyway randomized right at the start.
                  # (the point of this is to get data in different minibatches on different iterations,
                  # since in the preconditioning method, 2 samples in the same minibatch can
                  # affect each others' gradients.
  
  stage=-5
  
  io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.   These don't
  
  alpha=4.0   # relates to preconditioning.
  update_period=4 # relates to online preconditioning: says how often we update the subspace.
  num_samples_history=2000 # relates to online preconditioning
  max_change_per_sample=0.075
  precondition_rank_in=20  # relates to online preconditioning
  precondition_rank_out=80 # relates to online preconditioning
  
  # this relates to perturbed training.
  min_target_objf_change=0.1
  target_multiplier=0 #  Set this to e.g. 1.0 to enable perturbed training.
  
  mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
          # specified.)
  num_threads=16
  parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
    # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
  combine_num_threads=8
  combine_parallel_opts="--num-threads 8"  # queue options for the "combine" stage.
  cleanup=true
  egs_dir=
  egs_opts=
  prior_subset_size=10000 # 10k samples per job, for computing priors.  Should be
                          # more than enough.
  # End configuration section.
  
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  if [ $# != 4 ]; then
    echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
    echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
    echo ""
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --num-epochs <#epochs|4 >                        # Number of epochs of main training"
    echo "                                                   # while reducing learning rate (determines #iterations, together"
    echo "                                                   # with --samples-per-iter and --num-jobs-nnet)"
    echo "  --num-epochs-extra <#epochs-extra|1>             # Number of extra epochs of training"
    echo "                                                   # after learning rate fully reduced"
    echo "  --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
    echo "                                                       # data, 0.01 for large data"
    echo "  --final-learning-rate  <final-learning-rate|0.004>   # Learning rate at end of training, e.g. 0.004 for small"
    echo "                                                   # data, 0.001 for large data"
    echo "  --mix-up <#pseudo-gaussians|0>                   # Can be used to have multiple targets in final output layer,"
    echo "                                                   # per context-dependent state.  Try a number several times #states."
    echo "  --num-jobs-nnet <num-jobs|8>                     # Number of parallel jobs to use for main neural net"
    echo "                                                   # training (will affect results as well as speed; try 8, 16)"
    echo "                                                   # Note: if you increase this, you may want to also increase"
    echo "                                                   # the learning rate."
    echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
    echo "                                                   # as well as speed; may interact with batch size; if you increase"
    echo "                                                   # this, you may want to decrease the batch size."
    echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
    echo "                                                   # use multiple threads... "
    echo "  --io-opts <opts|\"--max-jobs-run 10\">                      # Options given to e.g. queue.pl for jobs that do a lot of I/O."
    echo "  --minibatch-size <minibatch-size|128>            # Size of minibatch to process (note: product with --num-threads"
    echo "                                                   # should not get too large, e.g. >2k)."
    echo "  --samples-per-iter <#samples|400000>             # Number of samples of data to process per iteration, per"
    echo "                                                   # process."
    echo "  --num-iters-final <#iters|10>                    # Number of final iterations to give to nnet-combine-fast to "
    echo "                                                   # interpolate parameters (the weights are learned with a validation set)"
    echo "  --num-utts-subset <#utts|300>                    # Number of utterances in subsets used for validation and diagnostics"
    echo "                                                   # (the validation subset is held out from training)"
    echo "  --num-frames-diagnostic <#frames|4000>           # Number of frames used in computing (train,valid) diagnostics"
    echo "  --stage <stage|-9>                               # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."
  
  
    exit 1;
  fi
  
  data=$1
  lang=$2
  alidir=$3
  dir=$4
  
  # Check some files.
  for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  
  # Set some variables.
  num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
  [ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
  [ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1
  
  nj=`cat $alidir/num_jobs` || exit 1;  # number of jobs in alignment dir...
  # in this dir we'll have just one job.
  sdata=$data/split$nj
  utils/split_data.sh $data $nj
  
  mkdir -p $dir/log
  echo $nj > $dir/num_jobs
  cp $alidir/tree $dir
  
  
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
  cp $lang/phones.txt $dir || exit 1;
  
  if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
    echo "$0: calling get_egs.sh"
    steps/nnet2/get_egs.sh --feat-type raw --cmvn-opts "--norm-means=false --norm-vars=false" \
        --samples-per-iter $samples_per_iter --left-context 0 --right-context 0 \
        --num-jobs-nnet $num_jobs_nnet --stage $get_egs_stage \
        --cmd "$cmd" $egs_opts --io-opts "$io_opts" \
        $data $lang $alidir $dir || exit 1;
  fi
  
  [ -z $egs_dir ] && egs_dir=$dir/egs
  
  iters_per_epoch=`cat $egs_dir/iters_per_epoch`  || exit 1;
  ! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
    echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
  num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1;
  
  
  if [ $stage -le -2 ]; then
    echo "$0: initializing neural net";
  
    feat_dim=$(feat-to-dim scp:$data/feats.scp -) || exit 1;
  
    online_preconditioning_opts="alpha=$alpha num-samples-history=$num_samples_history update-period=$update_period rank-in=$precondition_rank_in rank-out=$precondition_rank_out max-change-per-sample=$max_change_per_sample"
  
    cat >$dir/nnet.config <<EOF
  AffineComponentPreconditionedOnline input-dim=$feat_dim output-dim=$num_leaves $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0
  SoftmaxComponent dim=$num_leaves
  EOF
    $cmd $dir/log/nnet_init.log \
      nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \
      $dir/0.mdl || exit 1;
  fi
  
  if [ $stage -le -1 ]; then
    echo "Training transition probabilities and setting priors"
    $cmd $dir/log/train_trans.log \
      nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \
      || exit 1;
  fi
  
  num_iters_reduce=$[$num_epochs * $iters_per_epoch];
  num_iters_extra=$[$num_epochs_extra * $iters_per_epoch];
  num_iters=$[$num_iters_reduce+$num_iters_extra]
  
  echo "$0: Will train for $num_epochs + $num_epochs_extra epochs, equalling "
  echo "$0: $num_iters_reduce + $num_iters_extra = $num_iters iterations, "
  echo "$0: (while reducing learning rate) + (with constant learning rate)."
  
  
  function set_target_objf_change {
    # nothing to do if $target_multiplier not set.
    [ "$target_multiplier" == "0" -o "$target_multiplier" == "0.0" ] && return;
    [ $x -le $finish_add_layers_iter ] && return;
    wait=2  # the compute_prob_{train,valid} from 2 iterations ago should
            # most likey be done even though we backgrounded them.
    [ $[$x-$wait] -le 0 ] && return;
    while true; do
      # Note: awk 'some-expression' is the same as: awk '{if(some-expression) print;}'
      train_prob=$(awk '(NF == 1)' < $dir/log/compute_prob_train.$[$x-$wait].log)
      valid_prob=$(awk '(NF == 1)' < $dir/log/compute_prob_valid.$[$x-$wait].log)
      if [ -z "$train_prob" ] || [ -z "$valid_prob" ]; then
        echo "$0: waiting until $dir/log/compute_prob_{train,valid}.$[$x-$wait].log are done"
        sleep 60
      else
        target_objf_change=$(perl -e '($train,$valid,$min_change,$multiplier)=@ARGV; if (!($train < 0.0) || !($valid < 0.0)) { print "0
  "; print STDERR "Error: invalid train or valid prob: $train_prob, $valid_prob
  "; exit(0); } else { print STDERR "train,valid=$train,$valid
  "; $proposed_target = $multiplier * ($train-$valid); if ($proposed_target < $min_change) { print "0"; } else { print $proposed_target; }}' -- "$train_prob" "$valid_prob" "$min_target_objf_change" "$target_multiplier")
        echo "On iter $x, (train,valid) probs from iter $[$x-$wait] were ($train_prob,$valid_prob), and setting target-objf-change to $target_objf_change."
        return;
      fi
    done
  }
  
  mix_up_iter=$[$num_iters/2]
  
  if [ $num_threads -eq 1 ]; then
    parallel_suffix="-simple" # this enables us to use GPU code if
                           # we have just one thread.
    parallel_train_opts=
    if ! cuda-compiled; then
      echo "$0: WARNING: you are running with one thread but you have not compiled"
      echo "   for CUDA.  You may be running a setup optimized for GPUs.  If you have"
      echo "   GPUs and have nvcc installed, go to src/ and do ./configure; make"
    fi
  else
    parallel_suffix="-parallel"
    parallel_train_opts="--num-threads=$num_threads"
  fi
  
  x=0
  target_objf_change=0 # relates to perturbed training.
  
  while [ $x -lt $num_iters ]; do
    if [ $x -ge 0 ] && [ $stage -le $x ]; then
      # Set off jobs doing some diagnostics, in the background.
      $cmd $dir/log/compute_prob_valid.$x.log \
        nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs &
      $cmd $dir/log/compute_prob_train.$x.log \
        nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
      if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
        $cmd $dir/log/progress.$x.log \
          nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl \
            ark:$egs_dir/train_diagnostic.egs '&&' \
          nnet-am-info $dir/$x.mdl &
      fi
  
      echo "Training neural net (pass $x)"
  
      if [ $x -eq 0 ]; then
        # on iteration zero, use a smaller minibatch size and just one job: the
        # model-averaging doesn't seem to be helpful when the model is changing
        # too fast (i.e. it worsens the objective function), and the smaller
        # minibatch size will help to keep the update stable.
        this_minibatch_size=$[$minibatch_size/2];
        do_average=false
      else
        this_minibatch_size=$minibatch_size
        do_average=true
      fi
  
      set_target_objf_change;  # only has effect if target_multiplier != 0
      if [ "$target_objf_change" != "0" ]; then
        [ ! -f $dir/within_covar.spmat ] && \
          echo "$0: expected $dir/within_covar.spmat to exist." && exit 1;
        perturb_suffix="-perturbed"
        perturb_opts="--target-objf-change=$target_objf_change --within-covar=$dir/within_covar.spmat"
      fi
  
      $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
        nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
        ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
         nnet-train$parallel_suffix$perturb_suffix $parallel_train_opts $perturb_opts \
          --minibatch-size=$this_minibatch_size --srand=$x $dir/$x.mdl \
          ark:- $dir/$[$x+1].JOB.mdl \
        || exit 1;
  
      nnets_list=
      for n in `seq 1 $num_jobs_nnet`; do
        nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
      done
  
      learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`;
  
      if $do_average; then
        $cmd $dir/log/average.$x.log \
          nnet-am-average $nnets_list - \| \
          nnet-am-copy --learning-rate=$learning_rate - $dir/$[$x+1].mdl || exit 1;
      else
        n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
            $fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
            undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
            close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
            $best_n=$n; } } print "$best_n
  "; ' $num_jobs_nnet $dir/log/train.$x.%d.log) || exit 1;
        [ -z "$n" ] && echo "Error getting best model" && exit 1;
        $cmd $dir/log/select.$x.log \
          nnet-am-copy --learning-rate=$learning_rate $dir/$[$x+1].$n.mdl $dir/$[$x+1].mdl || exit 1;
      fi
  
      if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
        # mix up.
        echo Mixing up from $num_leaves to $mix_up components
        $cmd $dir/log/mix_up.$x.log \
          nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
          $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
      fi
      rm $nnets_list
      [ ! -f $dir/$[$x+1].mdl ] && exit 1;
      if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
         [ $[($x-1)%100] -ne 0  ] && [ $[$x-1] -le $[$num_iters-$num_iters_final] ]; then
        rm $dir/$[$x-1].mdl
      fi
    fi
    x=$[$x+1]
  done
  
  # Now do combination.
  # At the end, final.mdl will be a combination of the last e.g. 10 models.
  nnets_list=()
  if [ $num_iters_final -gt $num_iters_extra ]; then
    echo "Setting num_iters_final=$num_iters_extra"
  fi
  start=$[$num_iters-$num_iters_final+1]
  for x in `seq $start $num_iters`; do
    idx=$[$x-$start]
    if [ $x -gt $mix_up_iter ]; then
      nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
    fi
  done
  
  if [ $stage -le $num_iters ]; then
    echo "Doing final combination to produce final.mdl"
    # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
    # if there are many models it can give out-of-memory error; set num-threads to 8
    # to speed it up (this isn't ideal...)
    num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
    mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
    [ $mb -gt 512 ] && mb=512
    # Setting --initial-model to a large value makes it initialize the combination
    # with the average of all the models.  It's important not to start with a
    # single model, or, due to the invariance to scaling that these nonlinearities
    # give us, we get zero diagonal entries in the fisher matrix that
    # nnet-combine-fast uses for scaling, which after flooring and inversion, has
    # the effect that the initial model chosen gets much higher learning rates
    # than the others.  This prevents the optimization from working well.
    $cmd $combine_parallel_opts $dir/log/combine.log \
      nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
        --num-threads=$combine_num_threads \
        --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
        $dir/final.mdl || exit 1;
  
    # Compute the probability of the final, combined model with
    # the same subset we used for the previous compute_probs, as the
    # different subsets will lead to different probs.
    $cmd $dir/log/compute_prob_valid.final.log \
      nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs &
    $cmd $dir/log/compute_prob_train.final.log \
      nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs &
  fi
  
  if [ $stage -le $[$num_iters+1] ]; then
    echo "Getting average posterior for purposes of adjusting the priors."
    # Note: this just uses CPUs, using a smallish subset of data.
    rm $dir/post.*.vec 2>/dev/null
    $cmd JOB=1:$num_jobs_nnet $dir/log/get_post.JOB.log \
      nnet-subset-egs --n=$prior_subset_size ark:$egs_dir/egs.JOB.0.ark ark:- \| \
      nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \
      matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.JOB.vec || exit 1;
  
    sleep 3;  # make sure there is time for $dir/post.*.vec to appear.
  
    $cmd $dir/log/vector_sum.log \
     vector-sum $dir/post.*.vec $dir/post.vec || exit 1;
  
    rm $dir/post.*.vec;
  
    echo "Re-adjusting priors based on computed posteriors"
    $cmd $dir/log/adjust_priors.log \
      nnet-adjust-priors $dir/final.mdl $dir/post.vec $dir/final.mdl || exit 1;
  fi
  
  
  sleep 2
  
  echo Done
  
  if $cleanup; then
    echo Cleaning up data
    if [ $egs_dir == "$dir/egs" ]; then
      steps/nnet2/remove_egs.sh $dir/egs
    fi
  fi