Blame view
egs/wsj/s5/steps/nnet2/train_discriminative.sh
17.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script does MPE or MMI or state-level minimum bayes risk (sMBR) training # of neural nets. # Begin configuration section. cmd=run.pl num_epochs=4 # Number of epochs of training learning_rate=0.00002 effective_lrate= # If supplied, overrides the learning rate, which gets set to effective_lrate * num_jobs_nnet. acoustic_scale=0.1 # acoustic scale for MMI/MPFE/SMBR training. criterion=smbr boost=0.0 # option relevant for MMI drop_frames=false # option relevant for MMI one_silence_class=true # Option relevant for MPE/SMBR num_jobs_nnet=4 # Number of neural net jobs to run in parallel. Note: this # will interact with the learning rates (if you decrease # this, you'll have to decrease the learning rate, and vice # versa). samples_per_iter=400000 # measured in frames, not in "examples" modify_learning_rates=true last_layer_factor=1.0 # relates to modify-learning-rates first_layer_factor=1.0 # relates to modify-learning-rates shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples # on each iter. You could set it to 0 or to a large value for complete # randomization, but this would both consume memory and cause spikes in # disk I/O. Smaller is easier on disk and memory but less random. It's # not a huge deal though, as samples are anyway randomized right at the start. stage=-8 io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. These don't num_threads=16 # this is the default but you may want to change it, e.g. to 1 if # using GPUs. parallel_opts="--num-threads 16 --mem 1G" # by default we use 4 threads; this lets the queue know. # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads. transform_dir= # If this is a SAT system, directory for transforms cleanup=true transform_dir= degs_dir= retroactive=false online_ivector_dir= # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: $0 [opts] <data> <lang> <ali-dir> <denlat-dir> <src-model-file> <exp-dir>" echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet_denlats exp/tri4/final.mdl exp/tri4_mpe" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|4> # Number of epochs of training" echo " --learning-rate <learning-rate|0.0002> # Learning rate to use" echo " --effective-lrate <effective-learning-rate> # If supplied, learning rate will be set to" echo " # this value times num-jobs-nnet." echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net" echo " # training (will affect results as well as speed; try 8, 16)" echo " # Note: if you increase this, you may want to also increase" echo " # the learning rate." echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results" echo " # as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... " echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O." echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per" echo " # process." echo " --stage <stage|-8> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe" echo " --boost <boost|0.0> # Boosting factor for MMI (e.g., 0.1)" echo " --modify-learning-rates <true,false|false> # If true, modify learning rates to try to equalize relative" echo " # changes across layers." echo " --degs-dir <dir|""> # Directory for discriminative examples, e.g. exp/foo/degs" echo " --drop-frames <true,false|false> # Option that affects MMI training: if true, we exclude gradients from frames" echo " # where the numerator transition-id is not in the denominator lattice." echo " --one-silence-class <true,false|false> # Option that affects MPE/SMBR training (will tend to reduce insertions)" echo " --online-ivector-dir <dir|""> # Directory for online-estimated iVectors, used in the" echo " # online-neural-net setup." exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 src_model=$5 dir=$6 extra_files= [ ! -z $online_ivector_dir ] && \ extra_files="$online_ivector_dir/ivector_period $online_ivector_dir/ivector_online.scp" # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/num_jobs $alidir/tree \ $denlatdir/lat.1.gz $denlatdir/num_jobs $src_model $extra_files; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=$(cat $alidir/num_jobs) || exit 1; # caution: $nj is the number of # splits of the denlats and alignments, but # num_jobs_nnet is the number of nnet training # jobs we run in parallel. if ! [ $nj == $(cat $denlatdir/num_jobs) ]; then echo "Number of jobs mismatch: $nj versus $(cat $denlatdir/num_jobs)" exit 1; fi mkdir -p $dir/log || exit 1; [ -z "$degs_dir" ] && mkdir -p $dir/degs utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; sdata=$data/split$nj utils/split_data.sh $data $nj # function to remove egs that might be soft links. remove () { for x in $*; do [ -L $x ] && rm $(utils/make_absolute.sh $x); rm $x; done } splice_opts=`cat $alidir/splice_opts 2>/dev/null` silphonelist=`cat $lang/phones/silence.csl` || exit 1; cmvn_opts=`cat $alidir/cmvn_opts 2>/dev/null` cp $alidir/splice_opts $dir 2>/dev/null cp $alidir/cmvn_opts $dir 2>/dev/null cp $alidir/tree $dir if [ ! -z "$online_ivector_dir" ]; then ivector_period=$(cat $online_ivector_dir/ivector_period) ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1; # the 'const_dim_opt' allows it to write only one iVector per example, # rather than one per time-index... it has to average over const_dim_opt="--const-feat-dim=$ivector_dim" fi ## Set up features. ## Don't support deltas, only LDA or raw (mainly because deltas are less frequently used). if [ -z $feat_type ]; then if [ -f $alidir/final.mat ] && [ ! -f $transform_dir/raw_trans.1 ]; then feat_type=lda; else feat_type=raw; fi fi echo "$0: feature type is $feat_type" case $feat_type in raw) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |" ;; lda) splice_opts=`cat $alidir/splice_opts 2>/dev/null` cp $alidir/final.mat $dir feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ -z "$transform_dir" ]; then if [ -f $transform_dir/trans.1 ] || [ -f $transform_dir/raw_trans.1 ]; then transform_dir=$alidir fi fi if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -s $transform_dir/num_jobs ] && \ echo "$0: expected $transform_dir/num_jobs to contain the number of jobs." && exit 1; nj_orig=$(cat $transform_dir/num_jobs) if [ $feat_type == "raw" ]; then trans=raw_trans; else trans=trans; fi if [ $feat_type == "lda" ] && ! cmp $transform_dir/final.mat $alidir/final.mat; then echo "$0: LDA transforms differ between $alidir and $transform_dir" exit 1; fi if [ ! -f $transform_dir/$trans.1 ]; then echo "$0: expected $transform_dir/$trans.1 to exist (--transform-dir option)" exit 1; fi if [ $nj -ne $nj_orig ]; then # Copy the transforms into an archive with an index. for n in $(seq $nj_orig); do cat $transform_dir/$trans.$n; done | \ copy-feats ark:- ark,scp:$dir/$trans.ark,$dir/$trans.scp || exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk scp:$dir/$trans.scp ark:- ark:- |" else # number of jobs matches with alignment dir. feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/$trans.JOB ark:- ark:- |" fi fi if [ ! -z $online_ivector_dir ]; then # add iVectors to the features. feats="$feats paste-feats --length-tolerance=$ivector_period ark:- 'ark,s,cs:utils/filter_scp.pl $sdata/JOB/utt2spk $online_ivector_dir/ivector_online.scp | subsample-feats --n=-$ivector_period scp:- ark:- |' ark:- |" fi if [ -z "$degs_dir" ]; then if [ $stage -le -8 ]; then echo "$0: working out number of frames of training data" num_frames=$(steps/nnet2/get_num_frames.sh $data) echo $num_frames > $dir/num_frames # Working out number of iterations per epoch. iters_per_epoch=`perl -e "print int($num_frames/($samples_per_iter * $num_jobs_nnet) + 0.5);"` || exit 1; [ $iters_per_epoch -eq 0 ] && iters_per_epoch=1 echo $iters_per_epoch > $dir/degs/iters_per_epoch || exit 1; else num_frames=$(cat $dir/num_frames) || exit 1; iters_per_epoch=$(cat $dir/degs/iters_per_epoch) || exit 1; fi samples_per_iter_real=$[$num_frames/($num_jobs_nnet*$iters_per_epoch)] echo "$0: Every epoch, splitting the data up into $iters_per_epoch iterations," echo "$0: giving samples-per-iteration of $samples_per_iter_real (you requested $samples_per_iter)." else iters_per_epoch=$(cat $degs_dir/iters_per_epoch) || exit 1; [ -z "$iters_per_epoch" ] && exit 1; echo "$0: Every epoch, splitting the data up into $iters_per_epoch iterations" fi # we create these data links regardless of the stage, as there are situations where we # would want to recreate a data link that had previously been deleted. if [ -z "$degs_dir" ] && [ -d $dir/degs/storage ]; then echo "$0: creating data links for distributed storage of degs" # See utils/create_split_dir.pl for how this 'storage' directory # is created. for x in $(seq $num_jobs_nnet); do for y in $(seq $nj); do utils/create_data_link.pl $dir/degs/degs_orig.$x.$y.ark done for z in $(seq 0 $[$iters_per_epoch-1]); do utils/create_data_link.pl $dir/degs/degs_tmp.$x.$z.ark utils/create_data_link.pl $dir/degs/degs.$x.$z.ark done done fi if [ $stage -le -7 ]; then echo "$0: Copying initial model and modifying preconditioning setup" # Note, the baseline model probably had preconditioning, and we'll keep it; # but we want online preconditioning with a larger number of samples of # history, since in this setup the frames are only randomized at the segment # level so they are highly correlated. It might make sense to tune this a # little, later on, although I doubt it matters once the --num-samples-history # is large enough. if [ ! -z "$effective_lrate" ]; then learning_rate=$(perl -e "print ($num_jobs_nnet*$effective_lrate);") echo "$0: setting learning rate to $learning_rate = --num-jobs-nnet * --effective-lrate." fi $cmd $dir/log/convert.log \ nnet-am-copy --learning-rate=$learning_rate "$src_model" - \| \ nnet-am-switch-preconditioning --num-samples-history=50000 - $dir/0.mdl || exit 1; fi if [ $stage -le -6 ] && [ -z "$degs_dir" ]; then echo "$0: getting initial training examples by splitting lattices" egs_list= for n in `seq 1 $num_jobs_nnet`; do egs_list="$egs_list ark:$dir/degs/degs_orig.$n.JOB.ark" done $cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \ nnet-get-egs-discriminative --criterion=$criterion --drop-frames=$drop_frames \ $dir/0.mdl "$feats" \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz |" \ "ark,s,cs:gunzip -c $denlatdir/lat.JOB.gz|" ark:- \| \ nnet-copy-egs-discriminative $const_dim_opt ark:- $egs_list || exit 1; fi if [ $stage -le -5 ] && [ -z "$degs_dir" ]; then echo "$0: rearranging examples into parts for different parallel jobs" # combine all the "egs_orig.JOB.*.scp" (over the $nj splits of the data) and # then split into multiple parts egs.JOB.*.scp for different parts of the # data, 0 .. $iters_per_epoch-1. if [ $iters_per_epoch -eq 1 ]; then echo "Since iters-per-epoch == 1, just concatenating the data." for n in `seq 1 $num_jobs_nnet`; do cat $dir/degs/degs_orig.$n.*.ark > $dir/degs/degs_tmp.$n.0.ark || exit 1; remove $dir/degs/degs_orig.$n.*.ark # don't "|| exit 1", due to NFS bugs... done else # We'll have to split it up using nnet-copy-egs. egs_list= for n in `seq 0 $[$iters_per_epoch-1]`; do egs_list="$egs_list ark:$dir/degs/degs_tmp.JOB.$n.ark" done $cmd $io_opts JOB=1:$num_jobs_nnet $dir/log/split_egs.JOB.log \ nnet-copy-egs-discriminative --srand=JOB \ "ark:cat $dir/degs/degs_orig.JOB.*.ark|" $egs_list || exit 1; remove $dir/degs/degs_orig.*.*.ark fi fi if [ $stage -le -4 ] && [ -z "$degs_dir" ]; then # Next, shuffle the order of the examples in each of those files. # Each one should not be too large, so we can do this in memory. # Then combine the examples together to form suitable-size minibatches # (for discriminative examples, it's one example per minibatch, so we # have to combine the lattices). echo "Shuffling the order of training examples" echo "(in order to avoid stressing the disk, these won't all run at once)." # note, the "|| true" below is a workaround for NFS bugs # we encountered running this script with Debian-7, NFS-v4. # Also, we should note that we used to do nnet-combine-egs-discriminative # at this stage, but if iVectors are used this would expand the size of # the examples on disk (because they could no longer be stored in the spk_info # variable of the discrminative example, no longer being constant), so # now we do the nnet-combine-egs-discriminative operation on the fly during # training. for n in `seq 0 $[$iters_per_epoch-1]`; do $cmd $io_opts JOB=1:$num_jobs_nnet $dir/log/shuffle.$n.JOB.log \ nnet-shuffle-egs-discriminative "--srand=\$[JOB+($num_jobs_nnet*$n)]" \ ark:$dir/degs/degs_tmp.JOB.$n.ark ark:$dir/degs/degs.JOB.$n.ark || exit 1; remove $dir/degs/degs_tmp.*.$n.ark done fi if [ -z "$degs_dir" ]; then degs_dir=$dir/degs fi num_iters=$[$num_epochs * $iters_per_epoch]; echo "$0: Will train for $num_epochs epochs = $num_iters iterations" if [ $num_threads -eq 1 ]; then train_suffix="-simple" # this enables us to use GPU code if # we have just one thread. else train_suffix="-parallel --num-threads=$num_threads" fi x=0 while [ $x -lt $num_iters ]; do if [ $stage -le $x ]; then echo "Training neural net (pass $x)" $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \ nnet-train-discriminative$train_suffix --silence-phones=$silphonelist \ --criterion=$criterion --drop-frames=$drop_frames \ --one-silence-class=$one_silence_class --boost=$boost \ --acoustic-scale=$acoustic_scale $dir/$x.mdl \ "ark,bg:nnet-combine-egs-discriminative ark:$degs_dir/degs.JOB.$[$x%$iters_per_epoch].ark ark:- |" \ $dir/$[$x+1].JOB.mdl \ || exit 1; nnets_list=$(for n in $(seq $num_jobs_nnet); do echo $dir/$[$x+1].$n.mdl; done) $cmd $dir/log/average.$x.log \ nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1; if $modify_learning_rates; then $cmd $dir/log/modify_learning_rates.$x.log \ nnet-modify-learning-rates --retroactive=$retroactive \ --last-layer-factor=$last_layer_factor \ --first-layer-factor=$first_layer_factor \ $dir/$x.mdl $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1; fi rm $nnets_list fi x=$[$x+1] done rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl echo Done if $cleanup; then echo Cleaning up data echo Removing training examples if [ -d $dir/degs ] && [ ! -L $dir/degs ]; then # only remove if directory is not a soft link. remove $dir/degs/degs.* fi echo Removing most of the models for x in `seq 0 $num_iters`; do if [ $[$x%$iters_per_epoch] -ne 0 ]; then # delete all but the epoch-final models. rm $dir/$x.mdl 2>/dev/null fi done fi for n in $(seq 0 $num_epochs); do x=$[$n*$iters_per_epoch] rm $dir/epoch$n.mdl 2>/dev/null ln -s $x.mdl $dir/epoch$n.mdl done |