Blame view

egs/wsj/s5/steps/nnet2/train_discriminative2.sh 11.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  #!/bin/bash
  
  # Copyright 2012-2014  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  
  # This script does MPE or MMI or state-level minimum bayes risk (sMBR) training.
  # This version (2) of the script uses a newer format for the discriminative-training
  # egs, as obtained by steps/nnet2/get_egs_discriminative2.sh.
  
  # Begin configuration section.
  cmd=run.pl
  num_epochs=4       # Number of epochs of training
  learning_rate=0.00002
  effective_lrate=    # If supplied, overrides the learning rate, which gets set to effective_lrate * num_jobs_nnet.
  acoustic_scale=0.1  # acoustic scale for MMI/MPFE/SMBR training.
  boost=0.0       # option relevant for MMI
  
  criterion=smbr
  drop_frames=false #  option relevant for MMI
  one_silence_class=true # option relevant for MPE/SMBR
  num_jobs_nnet=4    # Number of neural net jobs to run in parallel.  Note: this
                     # will interact with the learning rates (if you decrease
                     # this, you'll have to decrease the learning rate, and vice
                     # versa).
  
  modify_learning_rates=true
  last_layer_factor=1.0  # relates to modify-learning-rates
  first_layer_factor=1.0 # relates to modify-learning-rates
  shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                  # on each iter.  You could set it to 0 or to a large value for complete
                  # randomization, but this would both consume memory and cause spikes in
                  # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                  # not a huge deal though, as samples are anyway randomized right at the start.
  
  
  stage=-3
  
  adjust_priors=false
  num_threads=16  # this is the default but you may want to change it, e.g. to 1 if
                  # using GPUs.
  parallel_opts="--num-threads 16 --mem 1G"
    # by default we use 16 threads; this lets the queue know.
    # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
  
  cleanup=true
  retroactive=false
  remove_egs=false
  src_model=  # will default to $degs_dir/final.mdl
  # End configuration section.
  
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  
  if [ $# != 2 ]; then
    echo "Usage: $0 [opts] <degs-dir> <exp-dir>"
    echo " e.g.: $0 exp/tri4_mpe_degs exp/tri4_mpe"
    echo ""
    echo "You have to first call get_egs_discriminative2.sh to dump the egs."
    echo "Caution: the options 'drop-frames' and 'criterion' are taken here"
    echo "even though they were required also by get_egs_discriminative2.sh,"
    echo "and they should normally match."
    echo ""
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --num-epochs <#epochs|4>                        # Number of epochs of training"
    echo "  --learning-rate <learning-rate|0.0002>           # Learning rate to use"
    echo "  --effective-lrate <effective-learning-rate>      # If supplied, learning rate will be set to"
    echo "                                                   # this value times num-jobs-nnet."
    echo "  --num-jobs-nnet <num-jobs|8>                     # Number of parallel jobs to use for main neural net"
    echo "                                                   # training (will affect results as well as speed; try 8, 16)"
    echo "                                                   # Note: if you increase this, you may want to also increase"
    echo "                                                   # the learning rate.  Also note: if there are fewer archives"
    echo "                                                   # of egs than this, it will get reduced automatically."
    echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
    echo "                                                   # as well as speed; may interact with batch size; if you increase"
    echo "                                                   # this, you may want to decrease the batch size.  With GPU, must be 1."
    echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
    echo "                                                   # use multiple threads... "
    echo "  --stage <stage|-3>                               # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."
    echo "  --criterion <criterion|smbr>                     # Training criterion: may be smbr, mmi or mpfe"
    echo "  --boost <boost|0.0>                              # Boosting factor for MMI (e.g., 0.1)"
    echo "  --drop-frames <true,false|false>                 # Option that affects MMI training: if true, we exclude gradients from frames"
    echo "                                                   # where the numerator transition-id is not in the denominator lattice."
    echo "  --one-silence-class <true,false|false>           # Option that affects MPE/SMBR training (will tend to reduce insertions)"
    echo "  --modify-learning-rates <true,false|false>       # If true, modify learning rates to try to equalize relative"
    echo "                                                   # changes across layers."
    exit 1;
  fi
  
  degs_dir=$1
  dir=$2
  
  [ -z "$src_model" ] && src_model=$degs_dir/final.mdl
  
  # Check some files.
  for f in $degs_dir/degs.1.ark $degs_dir/info/{num_archives,silence.csl,frames_per_archive} $src_model; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  mkdir -p $dir/log || exit 1;
  
  cp $degs_dir/phones.txt $dir 2>/dev/null
  # copy some things
  for f in splice_opts cmvn_opts tree final.mat; do
    if [ -f $degs_dir/$f ]; then
      cp $degs_dir/$f $dir/ || exit 1;
    fi
  done
  
  silphonelist=`cat $degs_dir/info/silence.csl` || exit 1;
  
  
  num_archives=$(cat $degs_dir/info/num_archives) || exit 1;
  
  if [ $num_jobs_nnet -gt $num_archives ]; then
    echo "$0: num-jobs-nnet $num_jobs_nnet exceeds number of archives $num_archives,"
    echo " ... setting it to $num_archives."
    num_jobs_nnet=$num_archives
  fi
  
  num_iters=$[($num_epochs*$num_archives)/$num_jobs_nnet]
  
  echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
  
  for e in $(seq 1 $num_epochs); do
    x=$[($e*$num_archives)/$num_jobs_nnet] # gives the iteration number.
    iter_to_epoch[$x]=$e
  done
  
  if [ $stage -le -1 ]; then
    echo "$0: Copying initial model and modifying preconditioning setup"
  
    # Note, the baseline model probably had preconditioning, and we'll keep it;
    # but we want online preconditioning with a larger number of samples of
    # history, since in this setup the frames are only randomized at the segment
    # level so they are highly correlated.  It might make sense to tune this a
    # little, later on, although I doubt it matters once the --num-samples-history
    # is large enough.
  
    if [ ! -z "$effective_lrate" ]; then
      learning_rate=$(perl -e "print ($num_jobs_nnet*$effective_lrate);")
      echo "$0: setting learning rate to $learning_rate = --num-jobs-nnet * --effective-lrate."
    fi
  
    $cmd $dir/log/convert.log \
      nnet-am-copy --learning-rate=$learning_rate "$src_model" - \| \
      nnet-am-switch-preconditioning  --num-samples-history=50000 - $dir/0.mdl || exit 1;
  fi
  
  
  
  if [ $num_threads -eq 1 ]; then
   train_suffix="-simple" # this enables us to use GPU code if
                          # we have just one thread.
  else
    train_suffix="-parallel --num-threads=$num_threads"
  fi
  
  rm $dir/.error
  x=0   
  while [ $x -lt $num_iters ]; do
    if [ $stage -le $x ]; then
      
      echo "Training neural net (pass $x)"
  
      # The \$ below delays the evaluation of the expression until the script runs (and JOB
      # will be replaced by the job-id).  That expression in $[..] is responsible for
      # choosing the archive indexes to use for each job on each iteration... we cycle through
      # all archives.
  
      $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
        nnet-combine-egs-discriminative \
          "ark:$degs_dir/degs.\$[((JOB-1+($x*$num_jobs_nnet))%$num_archives)+1].ark" ark:- \| \
        nnet-train-discriminative$train_suffix --silence-phones=$silphonelist \
         --criterion=$criterion --drop-frames=$drop_frames \
         --one-silence-class=$one_silence_class \
         --boost=$boost --acoustic-scale=$acoustic_scale \
         $dir/$x.mdl ark:- $dir/$[$x+1].JOB.mdl || exit 1;
  
      nnets_list=$(for n in $(seq $num_jobs_nnet); do echo $dir/$[$x+1].$n.mdl; done)
  
      # below use run.pl instead of a generic $cmd for these very quick stages,
      # so that we don't run the risk of waiting for a possibly hard-to-get GPU.
      run.pl $dir/log/average.$x.log \
        nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1;
  
      if $modify_learning_rates; then
        run.pl $dir/log/modify_learning_rates.$x.log \
          nnet-modify-learning-rates --retroactive=$retroactive \
          --last-layer-factor=$last_layer_factor \
          --first-layer-factor=$first_layer_factor \
          $dir/$x.mdl $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
      fi
      rm $nnets_list
    fi
    if $adjust_priors && [ ! -z "${iter_to_epoch[$x]}" ]; then
      if [ ! -f $degs_dir/priors_egs.1.ark ]; then
        echo "$0: Expecting $degs_dir/priors_egs.1.ark to exist since --adjust-priors was true."
        echo "$0: Run this script with --adjust-priors false to not adjust priors"
        exit 1
      fi
      (
      e=${iter_to_epoch[$x]}
      rm $dir/.error
      num_archives_priors=`cat $degs_dir/info/num_archives_priors` || { touch $dir/.error; echo "Could not find $degs_dir/info/num_archives_priors. Set --adjust-priors false to not adjust priors"; exit 1; }
  
      $cmd JOB=1:$num_archives_priors $dir/log/get_post.epoch$e.JOB.log \
        nnet-compute-from-egs "nnet-to-raw-nnet $dir/$x.mdl -|" \
        ark:$degs_dir/priors_egs.JOB.ark ark:- \| \
        matrix-sum-rows ark:- ark:- \| \
        vector-sum ark:- $dir/post.epoch$e.JOB.vec || \
        { touch $dir/.error; echo "Error in getting posteriors for adjusting priors. See $dir/log/get_post.epoch$e.*.log"; exit 1; }
  
      sleep 3;
  
      $cmd $dir/log/sum_post.epoch$e.log \
        vector-sum $dir/post.epoch$e.*.vec $dir/post.epoch$e.vec || \
        { touch $dir/.error; echo "Error in summing posteriors. See $dir/log/sum_post.epoch$e.log"; exit 1; }
  
      rm $dir/post.epoch$e.*.vec
  
      echo "Re-adjusting priors based on computed posteriors for iter $x"
      $cmd $dir/log/adjust_priors.epoch$e.log \
        nnet-adjust-priors $dir/$x.mdl $dir/post.epoch$e.vec $dir/$x.mdl \
        || { touch $dir/.error; echo "Error in adjusting priors. See $dir/log/adjust_priors.epoch$e.log"; exit 1; }
      ) &
    fi
  
    [ -f $dir/.error ] && exit 1
  
    x=$[$x+1]
  done
  
  rm $dir/final.mdl 2>/dev/null
  ln -s $x.mdl $dir/final.mdl
  
  echo Done
  
  epoch_final_iters=
  for e in $(seq 0 $num_epochs); do
    x=$[($e*$num_archives)/$num_jobs_nnet] # gives the iteration number.
    ln -sf $x.mdl $dir/epoch$e.mdl
    epoch_final_iters="$epoch_final_iters $x"
  done
  
  
  # function to remove egs that might be soft links.
  remove () { for x in $*; do [ -L $x ] && rm $(utils/make_absolute.sh $x); rm $x; done }
  
  if $cleanup && $remove_egs; then  # note: this is false by default.
    echo Removing training examples
    for n in $(seq $num_archives); do
      remove $degs_dir/degs.*
      remove $degs_dir/priors_egs.*
    done
  fi
  
  
  if $cleanup; then
    echo Removing most of the models
    for x in `seq 0 $num_iters`; do
      if ! echo $epoch_final_iters | grep -w $x >/dev/null; then 
        # if $x is not an epoch-final iteration..
        rm $dir/$x.mdl 2>/dev/null
      fi
    done
  fi