Blame view
egs/wsj/s5/steps/nnet2/train_discriminative2.sh
11.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
#!/bin/bash # Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script does MPE or MMI or state-level minimum bayes risk (sMBR) training. # This version (2) of the script uses a newer format for the discriminative-training # egs, as obtained by steps/nnet2/get_egs_discriminative2.sh. # Begin configuration section. cmd=run.pl num_epochs=4 # Number of epochs of training learning_rate=0.00002 effective_lrate= # If supplied, overrides the learning rate, which gets set to effective_lrate * num_jobs_nnet. acoustic_scale=0.1 # acoustic scale for MMI/MPFE/SMBR training. boost=0.0 # option relevant for MMI criterion=smbr drop_frames=false # option relevant for MMI one_silence_class=true # option relevant for MPE/SMBR num_jobs_nnet=4 # Number of neural net jobs to run in parallel. Note: this # will interact with the learning rates (if you decrease # this, you'll have to decrease the learning rate, and vice # versa). modify_learning_rates=true last_layer_factor=1.0 # relates to modify-learning-rates first_layer_factor=1.0 # relates to modify-learning-rates shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples # on each iter. You could set it to 0 or to a large value for complete # randomization, but this would both consume memory and cause spikes in # disk I/O. Smaller is easier on disk and memory but less random. It's # not a huge deal though, as samples are anyway randomized right at the start. stage=-3 adjust_priors=false num_threads=16 # this is the default but you may want to change it, e.g. to 1 if # using GPUs. parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know. # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads. cleanup=true retroactive=false remove_egs=false src_model= # will default to $degs_dir/final.mdl # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 2 ]; then echo "Usage: $0 [opts] <degs-dir> <exp-dir>" echo " e.g.: $0 exp/tri4_mpe_degs exp/tri4_mpe" echo "" echo "You have to first call get_egs_discriminative2.sh to dump the egs." echo "Caution: the options 'drop-frames' and 'criterion' are taken here" echo "even though they were required also by get_egs_discriminative2.sh," echo "and they should normally match." echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|4> # Number of epochs of training" echo " --learning-rate <learning-rate|0.0002> # Learning rate to use" echo " --effective-lrate <effective-learning-rate> # If supplied, learning rate will be set to" echo " # this value times num-jobs-nnet." echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net" echo " # training (will affect results as well as speed; try 8, 16)" echo " # Note: if you increase this, you may want to also increase" echo " # the learning rate. Also note: if there are fewer archives" echo " # of egs than this, it will get reduced automatically." echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results" echo " # as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size. With GPU, must be 1." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... " echo " --stage <stage|-3> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe" echo " --boost <boost|0.0> # Boosting factor for MMI (e.g., 0.1)" echo " --drop-frames <true,false|false> # Option that affects MMI training: if true, we exclude gradients from frames" echo " # where the numerator transition-id is not in the denominator lattice." echo " --one-silence-class <true,false|false> # Option that affects MPE/SMBR training (will tend to reduce insertions)" echo " --modify-learning-rates <true,false|false> # If true, modify learning rates to try to equalize relative" echo " # changes across layers." exit 1; fi degs_dir=$1 dir=$2 [ -z "$src_model" ] && src_model=$degs_dir/final.mdl # Check some files. for f in $degs_dir/degs.1.ark $degs_dir/info/{num_archives,silence.csl,frames_per_archive} $src_model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done mkdir -p $dir/log || exit 1; cp $degs_dir/phones.txt $dir 2>/dev/null # copy some things for f in splice_opts cmvn_opts tree final.mat; do if [ -f $degs_dir/$f ]; then cp $degs_dir/$f $dir/ || exit 1; fi done silphonelist=`cat $degs_dir/info/silence.csl` || exit 1; num_archives=$(cat $degs_dir/info/num_archives) || exit 1; if [ $num_jobs_nnet -gt $num_archives ]; then echo "$0: num-jobs-nnet $num_jobs_nnet exceeds number of archives $num_archives," echo " ... setting it to $num_archives." num_jobs_nnet=$num_archives fi num_iters=$[($num_epochs*$num_archives)/$num_jobs_nnet] echo "$0: Will train for $num_epochs epochs = $num_iters iterations" for e in $(seq 1 $num_epochs); do x=$[($e*$num_archives)/$num_jobs_nnet] # gives the iteration number. iter_to_epoch[$x]=$e done if [ $stage -le -1 ]; then echo "$0: Copying initial model and modifying preconditioning setup" # Note, the baseline model probably had preconditioning, and we'll keep it; # but we want online preconditioning with a larger number of samples of # history, since in this setup the frames are only randomized at the segment # level so they are highly correlated. It might make sense to tune this a # little, later on, although I doubt it matters once the --num-samples-history # is large enough. if [ ! -z "$effective_lrate" ]; then learning_rate=$(perl -e "print ($num_jobs_nnet*$effective_lrate);") echo "$0: setting learning rate to $learning_rate = --num-jobs-nnet * --effective-lrate." fi $cmd $dir/log/convert.log \ nnet-am-copy --learning-rate=$learning_rate "$src_model" - \| \ nnet-am-switch-preconditioning --num-samples-history=50000 - $dir/0.mdl || exit 1; fi if [ $num_threads -eq 1 ]; then train_suffix="-simple" # this enables us to use GPU code if # we have just one thread. else train_suffix="-parallel --num-threads=$num_threads" fi rm $dir/.error x=0 while [ $x -lt $num_iters ]; do if [ $stage -le $x ]; then echo "Training neural net (pass $x)" # The \$ below delays the evaluation of the expression until the script runs (and JOB # will be replaced by the job-id). That expression in $[..] is responsible for # choosing the archive indexes to use for each job on each iteration... we cycle through # all archives. $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \ nnet-combine-egs-discriminative \ "ark:$degs_dir/degs.\$[((JOB-1+($x*$num_jobs_nnet))%$num_archives)+1].ark" ark:- \| \ nnet-train-discriminative$train_suffix --silence-phones=$silphonelist \ --criterion=$criterion --drop-frames=$drop_frames \ --one-silence-class=$one_silence_class \ --boost=$boost --acoustic-scale=$acoustic_scale \ $dir/$x.mdl ark:- $dir/$[$x+1].JOB.mdl || exit 1; nnets_list=$(for n in $(seq $num_jobs_nnet); do echo $dir/$[$x+1].$n.mdl; done) # below use run.pl instead of a generic $cmd for these very quick stages, # so that we don't run the risk of waiting for a possibly hard-to-get GPU. run.pl $dir/log/average.$x.log \ nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1; if $modify_learning_rates; then run.pl $dir/log/modify_learning_rates.$x.log \ nnet-modify-learning-rates --retroactive=$retroactive \ --last-layer-factor=$last_layer_factor \ --first-layer-factor=$first_layer_factor \ $dir/$x.mdl $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1; fi rm $nnets_list fi if $adjust_priors && [ ! -z "${iter_to_epoch[$x]}" ]; then if [ ! -f $degs_dir/priors_egs.1.ark ]; then echo "$0: Expecting $degs_dir/priors_egs.1.ark to exist since --adjust-priors was true." echo "$0: Run this script with --adjust-priors false to not adjust priors" exit 1 fi ( e=${iter_to_epoch[$x]} rm $dir/.error num_archives_priors=`cat $degs_dir/info/num_archives_priors` || { touch $dir/.error; echo "Could not find $degs_dir/info/num_archives_priors. Set --adjust-priors false to not adjust priors"; exit 1; } $cmd JOB=1:$num_archives_priors $dir/log/get_post.epoch$e.JOB.log \ nnet-compute-from-egs "nnet-to-raw-nnet $dir/$x.mdl -|" \ ark:$degs_dir/priors_egs.JOB.ark ark:- \| \ matrix-sum-rows ark:- ark:- \| \ vector-sum ark:- $dir/post.epoch$e.JOB.vec || \ { touch $dir/.error; echo "Error in getting posteriors for adjusting priors. See $dir/log/get_post.epoch$e.*.log"; exit 1; } sleep 3; $cmd $dir/log/sum_post.epoch$e.log \ vector-sum $dir/post.epoch$e.*.vec $dir/post.epoch$e.vec || \ { touch $dir/.error; echo "Error in summing posteriors. See $dir/log/sum_post.epoch$e.log"; exit 1; } rm $dir/post.epoch$e.*.vec echo "Re-adjusting priors based on computed posteriors for iter $x" $cmd $dir/log/adjust_priors.epoch$e.log \ nnet-adjust-priors $dir/$x.mdl $dir/post.epoch$e.vec $dir/$x.mdl \ || { touch $dir/.error; echo "Error in adjusting priors. See $dir/log/adjust_priors.epoch$e.log"; exit 1; } ) & fi [ -f $dir/.error ] && exit 1 x=$[$x+1] done rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl echo Done epoch_final_iters= for e in $(seq 0 $num_epochs); do x=$[($e*$num_archives)/$num_jobs_nnet] # gives the iteration number. ln -sf $x.mdl $dir/epoch$e.mdl epoch_final_iters="$epoch_final_iters $x" done # function to remove egs that might be soft links. remove () { for x in $*; do [ -L $x ] && rm $(utils/make_absolute.sh $x); rm $x; done } if $cleanup && $remove_egs; then # note: this is false by default. echo Removing training examples for n in $(seq $num_archives); do remove $degs_dir/degs.* remove $degs_dir/priors_egs.* done fi if $cleanup; then echo Removing most of the models for x in `seq 0 $num_iters`; do if ! echo $epoch_final_iters | grep -w $x >/dev/null; then # if $x is not an epoch-final iteration.. rm $dir/$x.mdl 2>/dev/null fi done fi |