Blame view
egs/wsj/s5/steps/nnet2/train_discriminative_multilang2.sh
12.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#!/bin/bash # Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script does MPE or MMI or state-level minimum bayes risk (sMBR) training, # in the multi-language or at least multi-model setting where you have multiple "degs" directories. # The input "degs" directories must be dumped by one of the get_egs_discriminative2.sh scripts. # Begin configuration section. cmd=run.pl num_epochs=4 # Number of epochs of training learning_rate=0.00002 acoustic_scale=0.1 # acoustic scale for MMI/MPFE/SMBR training. boost=0.0 # option relevant for MMI criterion=smbr drop_frames=false # option relevant for MMI one_silence_class=true # option relevant for MPE/SMBR num_jobs_nnet="4 4" # Number of neural net jobs to run in parallel, one per # language.. Note: this will interact with the learning # rates (if you decrease this, you'll have to decrease # the learning rate, and vice versa). modify_learning_rates=true last_layer_factor=1.0 # relates to modify-learning-rates first_layer_factor=1.0 # relates to modify-learning-rates shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples # on each iter. You could set it to 0 or to a large value for complete # randomization, but this would both consume memory and cause spikes in # disk I/O. Smaller is easier on disk and memory but less random. It's # not a huge deal though, as samples are anyway randomized right at the start. stage=-3 num_threads=16 # this is the default but you may want to change it, e.g. to 1 if # using GPUs. cleanup=true retroactive=false remove_egs=false src_models= # can be used to override the defaults of <degs-dir1>/final.mdl <degs-dir2>/final.mdl .. etc. # set this to a space-separated list. # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# -lt 3 ]; then echo "Usage: $0 [opts] <degs-dir1> <degs-dir2> ... <degs-dirN> <exp-dir>" echo " e.g.: $0 exp/tri4_mpe_degs exp_other_lang/tri4_mpe_degs exp/tri4_mpe_multilang" echo "" echo "You have to first call get_egs_discriminative2.sh to dump the egs." echo "Caution: the options 'drop_frames' and 'criterion' are taken here" echo "even though they were required also by get_egs_discriminative2.sh," echo "and they should normally match." echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|4> # Number of epochs of training (measured on language 0)" echo " --learning-rate <learning-rate|0.0002> # Learning rate to use" echo " --num-jobs-nnet <num-jobs|4 4> # Number of parallel jobs to use for main neural net:" echo " # space separated list of num-jobs per language. Affects" echo " # relative weighting." echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results" echo " # as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size. With GPU, must be 1." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... " echo " --stage <stage|-3> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe" echo " --boost <boost|0.0> # Boosting factor for MMI (e.g., 0.1)" echo " --drop-frames <true,false|false> # Option that affects MMI training: if true, we exclude gradients from frames" echo " # where the numerator transition-id is not in the denominator lattice." echo " --modify-learning-rates <true,false|false> # If true, modify learning rates to try to equalize relative" echo " # changes across layers." exit 1; fi argv=("$@") num_args=$# num_lang=$[$num_args-1] dir=${argv[$num_args-1]} num_jobs_nnet_array=($num_jobs_nnet) ! [ "${#num_jobs_nnet_array[@]}" -eq "$num_lang" ] && \ echo "$0: --num-jobs-nnet option must have size equal to the number of languages" && exit 1; for lang in $(seq 0 $[$num_lang-1]); do degs_dir[$lang]=${argv[$lang]} done if [ ! -z "$src_models" ]; then src_model_array=($src_models) ! [ "${#src_model_array[@]}" -eq "$num_lang" ] && \ echo "$0: --src-models option must have size equal to the number of languages" && exit 1; else for lang in $(seq 0 $[$num_lang-1]); do src_model_array[$lang]=${degs_dir[$lang]}/final.mdl done fi mkdir -p $dir/log || exit 1; for lang in $(seq 0 $[$num_lang-1]); do this_degs_dir=${degs_dir[$lang]} mdl=${src_model_array[$lang]} this_num_jobs_nnet=${num_jobs_nnet_array[$lang]} # Check inputs for f in $this_degs_dir/degs.1.ark $this_degs_dir/info/{num_archives,silence.csl,frames_per_archive} $mdl; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done mkdir -p $dir/$lang/log || exit 1; # check for valid num-jobs-nnet. ! [ $this_num_jobs_nnet -gt 0 ] && echo "Bad num-jobs-nnet option '$num_jobs_nnet'" && exit 1; this_num_archives=$(cat $this_degs_dir/info/num_archives) || exit 1; num_archives_array[$lang]=$this_num_archives silphonelist_array[$lang]=$(cat $this_degs_dir/info/silence.csl) || exit 1; if [ $this_num_jobs_nnet -gt $this_num_archives ]; then echo "$0: num-jobs-nnet $this_num_jobs_nnet exceeds number of archives $this_num_archives" echo " ... for language $lang; setting it to $this_num_archives." num_jobs_nnet_array[$lang]=$this_num_archives fi # copy some things from the input directories. for f in splice_opts cmvn_opts tree final.mat; do if [ -f $this_degs_dir/$f ]; then cp $this_degs_dir/$f $dir/$lang/ || exit 1; fi done if [ -f $this_degs_dir/conf ]; then ln -sf $(utils/make_absolute.sh $this_degs_dir/conf) $dir/ || exit 1; fi done # work out number of iterations. num_archives0=$(cat ${degs_dir[0]}/info/num_archives) || exit 1; num_jobs_nnet0=${num_jobs_nnet_array[0]} ! [ $num_epochs -gt 0 ] && echo "Error: num-epochs $num_epochs is not valid" && exit 1; num_iters=$[($num_epochs*$num_archives0)/$num_jobs_nnet0] echo "$0: Will train for $num_epochs epochs = $num_iters iterations (measured on language 0)" # Work out the number of epochs we train for on the other languages... this is # just informational. for lang in $(seq 1 $[$num_lang-1]); do this_degs_dir=${degs_dir[$lang]} this_num_archives=${num_archives_array[$lang]} this_num_epochs=$[($num_iters*${num_jobs_nnet_array[$lang]})/$this_num_archives] echo "$0: $num_iters iterations is approximately $this_num_epochs epochs for language $lang" done if [ $stage -le -1 ]; then echo "$0: Copying initial models and modifying preconditioning setups" # Note, the baseline model probably had preconditioning, and we'll keep it; # but we want online preconditioning with a larger number of samples of # history, since in this setup the frames are only randomized at the segment # level so they are highly correlated. It might make sense to tune this a # little, later on, although I doubt it matters once the --num-samples-history # is large enough. for lang in $(seq 0 $[$num_lang-1]); do $cmd $dir/$lang/log/convert.log \ nnet-am-copy --learning-rate=$learning_rate ${src_model_array[$lang]} - \| \ nnet-am-switch-preconditioning --num-samples-history=50000 - $dir/$lang/0.mdl || exit 1; done fi if [ $num_threads -eq 1 ]; then train_suffix="-simple" # this enables us to use GPU code if # we have just one thread. else train_suffix="-parallel --num-threads=$num_threads" fi x=0 while [ $x -lt $num_iters ]; do if [ $stage -le $x ]; then echo "Training neural net (pass $x)" rm $dir/.error 2>/dev/null for lang in $(seq 0 $[$num_lang-1]); do this_num_jobs_nnet=${num_jobs_nnet_array[$lang]} this_num_archives=${num_archives_array[$lang]} this_degs_dir=${degs_dir[$lang]} this_silphonelist=${silphonelist_array[$lang]} # The \$ below delays the evaluation of the expression until the script runs (and JOB # will be replaced by the job-id). That expression in $[..] is responsible for # choosing the archive indexes to use for each job on each iteration... we cycle through # all archives. ( $cmd JOB=1:$this_num_jobs_nnet $dir/$lang/log/train.$x.JOB.log \ nnet-combine-egs-discriminative \ "ark:$this_degs_dir/degs.\$[((JOB-1+($x*$this_num_jobs_nnet))%$this_num_archives)+1].ark" ark:- \| \ nnet-train-discriminative$train_suffix --silence-phones=$this_silphonelist \ --criterion=$criterion --drop-frames=$drop_frames \ --one-silence-class=$one_silence_class \ --boost=$boost --acoustic-scale=$acoustic_scale \ $dir/$lang/$x.mdl ark:- $dir/$lang/$[$x+1].JOB.mdl || exit 1; nnets_list=$(for n in $(seq $this_num_jobs_nnet); do echo $dir/$lang/$[$x+1].$n.mdl; done) # produce an average just within this language. $cmd $dir/$lang/log/average.$x.log \ nnet-am-average $nnets_list $dir/$lang/$[$x+1].tmp.mdl || exit 1; rm $nnets_list ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: error on pass $x" && exit 1 # apply the modify-learning-rates thing to the model for the zero'th language; # we'll use the resulting learning rates for the other languages. if $modify_learning_rates; then $cmd $dir/log/modify_learning_rates.$x.log \ nnet-modify-learning-rates --retroactive=$retroactive \ --last-layer-factor=$last_layer_factor \ --first-layer-factor=$first_layer_factor \ $dir/0/$x.mdl $dir/0/$[$x+1].tmp.mdl $dir/0/$[$x+1].tmp.mdl || exit 1; fi nnets_list=$(for lang in $(seq 0 $[$num_lang-1]); do echo $dir/$lang/$[$x+1].tmp.mdl; done) weights_csl=$(echo $num_jobs_nnet | sed 's/ /:/g') # get as colon separated list. # the next command produces the cross-language averaged model containing the # final layer corresponding to language zero. Note, if we did modify-learning-rates, # it will also have the modified learning rates. $cmd $dir/log/average.$x.log \ nnet-am-average --weights=$weights_csl --skip-last-layer=true \ $nnets_list $dir/0/$[$x+1].mdl || exit 1; # we'll transfer these learning rates to the other models. learning_rates=$(nnet-am-info --print-learning-rates=true $dir/0/$[$x+1].mdl 2>/dev/null) for lang in $(seq 1 $[$num_lang-1]); do # the next command takes the averaged hidden parameters from language zero, and # the last layer from language $lang. It's not really doing averaging. # we use nnet-am-copy to transfer the learning rates from model zero. $cmd $dir/$lang/log/combine_average.$x.log \ nnet-am-average --weights=0.0:1.0 --skip-last-layer=true \ $dir/$lang/$[$x+1].tmp.mdl $dir/0/$[$x+1].mdl - \| \ nnet-am-copy --learning-rates=$learning_rates - $dir/$lang/$[$x+1].mdl || exit 1; done $cleanup && rm $dir/*/$[$x+1].tmp.mdl fi x=$[$x+1] done for lang in $(seq 0 $[$num_lang-1]); do rm $dir/$lang/final.mdl 2>/dev/null ln -s $x.mdl $dir/$lang/final.mdl epoch_final_iters= for e in $(seq 0 $num_epochs); do x=$[($e*$num_archives0)/$num_jobs_nnet0] # gives the iteration number. ln -sf $x.mdl $dir/$lang/epoch$e.mdl epoch_final_iters="$epoch_final_iters $x" done if $cleanup; then echo "Removing most of the models for language $lang" for x in `seq 0 $num_iters`; do if ! echo $epoch_final_iters | grep -w $x >/dev/null; then # if $x is not an epoch-final iteration.. rm $dir/$lang/$x.mdl 2>/dev/null fi done fi done echo Done |