Blame view

egs/wsj/s5/steps/nnet2/train_discriminative_multilang2.sh 12.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
  #!/bin/bash
  
  # Copyright 2012-2014  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  
  # This script does MPE or MMI or state-level minimum bayes risk (sMBR) training,
  # in the multi-language or at least multi-model setting where you have multiple "degs" directories.
  # The input "degs" directories must be dumped by one of the get_egs_discriminative2.sh scripts.
  
  # Begin configuration section.
  cmd=run.pl
  num_epochs=4       # Number of epochs of training
  learning_rate=0.00002
  acoustic_scale=0.1  # acoustic scale for MMI/MPFE/SMBR training.
  boost=0.0       # option relevant for MMI
  
  criterion=smbr
  drop_frames=false #  option relevant for MMI
  one_silence_class=true # option relevant for MPE/SMBR
  num_jobs_nnet="4 4"    # Number of neural net jobs to run in parallel, one per
                         # language..  Note: this will interact with the learning
                         # rates (if you decrease this, you'll have to decrease
                         # the learning rate, and vice versa).
  
  modify_learning_rates=true
  last_layer_factor=1.0  # relates to modify-learning-rates
  first_layer_factor=1.0 # relates to modify-learning-rates
  shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                  # on each iter.  You could set it to 0 or to a large value for complete
                  # randomization, but this would both consume memory and cause spikes in
                  # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                  # not a huge deal though, as samples are anyway randomized right at the start.
  
  
  stage=-3
  
  
  num_threads=16  # this is the default but you may want to change it, e.g. to 1 if
                  # using GPUs.
  cleanup=true
  retroactive=false
  remove_egs=false
  src_models=  # can be used to override the defaults of <degs-dir1>/final.mdl <degs-dir2>/final.mdl .. etc.
               # set this to a space-separated list.
  # End configuration section.
  
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  
  if [ $# -lt 3 ]; then
    echo "Usage: $0 [opts] <degs-dir1> <degs-dir2> ... <degs-dirN>  <exp-dir>"
    echo " e.g.: $0 exp/tri4_mpe_degs exp_other_lang/tri4_mpe_degs exp/tri4_mpe_multilang"
    echo ""
    echo "You have to first call get_egs_discriminative2.sh to dump the egs."
    echo "Caution: the options 'drop_frames' and 'criterion' are taken here"
    echo "even though they were required also by get_egs_discriminative2.sh,"
    echo "and they should normally match."
    echo ""
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --num-epochs <#epochs|4>                        # Number of epochs of training (measured on language 0)"
    echo "  --learning-rate <learning-rate|0.0002>           # Learning rate to use"
    echo "  --num-jobs-nnet <num-jobs|4 4>                   # Number of parallel jobs to use for main neural net:"
    echo "                                                   # space separated list of num-jobs per language. Affects"
    echo "                                                   # relative weighting."
    echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
    echo "                                                   # as well as speed; may interact with batch size; if you increase"
    echo "                                                   # this, you may want to decrease the batch size.  With GPU, must be 1."
    echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
    echo "                                                   # use multiple threads... "
    echo "  --stage <stage|-3>                               # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."
    echo "  --criterion <criterion|smbr>                     # Training criterion: may be smbr, mmi or mpfe"
    echo "  --boost <boost|0.0>                              # Boosting factor for MMI (e.g., 0.1)"
    echo "  --drop-frames <true,false|false>                 # Option that affects MMI training: if true, we exclude gradients from frames"
    echo "                                                   # where the numerator transition-id is not in the denominator lattice."
    echo "  --modify-learning-rates <true,false|false>       # If true, modify learning rates to try to equalize relative"
    echo "                                                   # changes across layers."
    exit 1;
  fi
  
  argv=("$@") 
  num_args=$#
  num_lang=$[$num_args-1]
  
  dir=${argv[$num_args-1]}
  
  num_jobs_nnet_array=($num_jobs_nnet)
  ! [ "${#num_jobs_nnet_array[@]}" -eq "$num_lang" ] && \
    echo "$0: --num-jobs-nnet option must have size equal to the number of languages" && exit 1;
  
  for lang in $(seq 0 $[$num_lang-1]); do
    degs_dir[$lang]=${argv[$lang]}
  done
  
  if [ ! -z "$src_models" ]; then
    src_model_array=($src_models)
    ! [ "${#src_model_array[@]}" -eq "$num_lang" ] && \
      echo "$0: --src-models option must have size equal to the number of languages" && exit 1;
  else
    for lang in $(seq 0 $[$num_lang-1]); do
      src_model_array[$lang]=${degs_dir[$lang]}/final.mdl
    done
  fi
  
  mkdir -p $dir/log || exit 1;
  
  for lang in $(seq 0 $[$num_lang-1]); do
    this_degs_dir=${degs_dir[$lang]}
    mdl=${src_model_array[$lang]}
    this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
    # Check inputs
    for f in $this_degs_dir/degs.1.ark $this_degs_dir/info/{num_archives,silence.csl,frames_per_archive} $mdl; do
      [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
    done
    mkdir -p $dir/$lang/log || exit 1;
  
    # check for valid num-jobs-nnet.
    ! [ $this_num_jobs_nnet -gt 0 ] && echo "Bad num-jobs-nnet option '$num_jobs_nnet'" && exit 1;
    this_num_archives=$(cat $this_degs_dir/info/num_archives) || exit 1;
    num_archives_array[$lang]=$this_num_archives
    silphonelist_array[$lang]=$(cat $this_degs_dir/info/silence.csl) || exit 1;
  
    if [ $this_num_jobs_nnet -gt $this_num_archives ]; then
      echo "$0: num-jobs-nnet $this_num_jobs_nnet exceeds number of archives $this_num_archives"
      echo " ... for language $lang; setting it to $this_num_archives."
      num_jobs_nnet_array[$lang]=$this_num_archives
    fi
  
    # copy some things from the input directories.
    for f in splice_opts cmvn_opts tree final.mat; do
      if [ -f $this_degs_dir/$f ]; then
        cp $this_degs_dir/$f $dir/$lang/ || exit 1;
      fi
    done
    if [ -f $this_degs_dir/conf ]; then
      ln -sf $(utils/make_absolute.sh $this_degs_dir/conf) $dir/ || exit 1; 
    fi
  done
  
  
  # work out number of iterations.
  num_archives0=$(cat ${degs_dir[0]}/info/num_archives) || exit 1;
  num_jobs_nnet0=${num_jobs_nnet_array[0]}
  
  ! [ $num_epochs -gt 0 ] && echo "Error: num-epochs $num_epochs is not valid" && exit 1;
  
  
  num_iters=$[($num_epochs*$num_archives0)/$num_jobs_nnet0]
  
  echo "$0: Will train for $num_epochs epochs = $num_iters iterations (measured on language 0)"
  # Work out the number of epochs we train for on the other languages... this is
  # just informational.
  for lang in $(seq 1 $[$num_lang-1]); do
    this_degs_dir=${degs_dir[$lang]}
    this_num_archives=${num_archives_array[$lang]}
    this_num_epochs=$[($num_iters*${num_jobs_nnet_array[$lang]})/$this_num_archives]
    echo "$0: $num_iters iterations is approximately $this_num_epochs epochs for language $lang"
  done
  
  
  
  if [ $stage -le -1 ]; then
    echo "$0: Copying initial models and modifying preconditioning setups"
  
    # Note, the baseline model probably had preconditioning, and we'll keep it;
    # but we want online preconditioning with a larger number of samples of
    # history, since in this setup the frames are only randomized at the segment
    # level so they are highly correlated.  It might make sense to tune this a
    # little, later on, although I doubt it matters once the --num-samples-history
    # is large enough.
  
    for lang in $(seq 0 $[$num_lang-1]); do
      $cmd $dir/$lang/log/convert.log \
        nnet-am-copy --learning-rate=$learning_rate ${src_model_array[$lang]} - \| \
        nnet-am-switch-preconditioning  --num-samples-history=50000 - $dir/$lang/0.mdl || exit 1;
    done
  fi
  
  
  
  if [ $num_threads -eq 1 ]; then
   train_suffix="-simple" # this enables us to use GPU code if
                          # we have just one thread.
  else
    train_suffix="-parallel --num-threads=$num_threads"
  fi
  
  
  x=0   
  while [ $x -lt $num_iters ]; do
    if [ $stage -le $x ]; then
      
      echo "Training neural net (pass $x)"
  
  
      rm $dir/.error 2>/dev/null
  
      for lang in $(seq 0 $[$num_lang-1]); do
        this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
        this_num_archives=${num_archives_array[$lang]}
        this_degs_dir=${degs_dir[$lang]}
        this_silphonelist=${silphonelist_array[$lang]}
  
        # The \$ below delays the evaluation of the expression until the script runs (and JOB
        # will be replaced by the job-id).  That expression in $[..] is responsible for
        # choosing the archive indexes to use for each job on each iteration... we cycle through
        # all archives.
  
        (
          $cmd JOB=1:$this_num_jobs_nnet $dir/$lang/log/train.$x.JOB.log \
            nnet-combine-egs-discriminative \
            "ark:$this_degs_dir/degs.\$[((JOB-1+($x*$this_num_jobs_nnet))%$this_num_archives)+1].ark" ark:- \| \
            nnet-train-discriminative$train_suffix --silence-phones=$this_silphonelist \
             --criterion=$criterion --drop-frames=$drop_frames \
             --one-silence-class=$one_silence_class \
             --boost=$boost --acoustic-scale=$acoustic_scale \
             $dir/$lang/$x.mdl ark:- $dir/$lang/$[$x+1].JOB.mdl || exit 1;
  
          nnets_list=$(for n in $(seq $this_num_jobs_nnet); do echo $dir/$lang/$[$x+1].$n.mdl; done)
  
          # produce an average just within this language.
          $cmd $dir/$lang/log/average.$x.log \
            nnet-am-average $nnets_list $dir/$lang/$[$x+1].tmp.mdl || exit 1;
  
          rm $nnets_list
        ) || touch $dir/.error &
      done
      wait
      [ -f $dir/.error ] && echo "$0: error on pass $x" && exit 1
  
  
      # apply the modify-learning-rates thing to the model for the zero'th language;
      # we'll use the resulting learning rates for the other languages.
      if $modify_learning_rates; then
        $cmd $dir/log/modify_learning_rates.$x.log \
          nnet-modify-learning-rates --retroactive=$retroactive \
          --last-layer-factor=$last_layer_factor \
          --first-layer-factor=$first_layer_factor \
          $dir/0/$x.mdl $dir/0/$[$x+1].tmp.mdl $dir/0/$[$x+1].tmp.mdl || exit 1;
      fi
  
      nnets_list=$(for lang in $(seq 0 $[$num_lang-1]); do echo $dir/$lang/$[$x+1].tmp.mdl; done)
      weights_csl=$(echo $num_jobs_nnet | sed 's/ /:/g') # get as colon separated list.
  
      # the next command produces the cross-language averaged model containing the
      # final layer corresponding to language zero.  Note, if we did modify-learning-rates,
      # it will also have the modified learning rates.
      $cmd $dir/log/average.$x.log \
        nnet-am-average --weights=$weights_csl --skip-last-layer=true \
        $nnets_list $dir/0/$[$x+1].mdl || exit 1;
  
      # we'll transfer these learning rates to the other models.
      learning_rates=$(nnet-am-info --print-learning-rates=true $dir/0/$[$x+1].mdl 2>/dev/null)        
  
      for lang in $(seq 1 $[$num_lang-1]); do
        # the next command takes the averaged hidden parameters from language zero, and
        # the last layer from language $lang.  It's not really doing averaging.
        # we use nnet-am-copy to transfer the learning rates from model zero.
        $cmd $dir/$lang/log/combine_average.$x.log \
          nnet-am-average --weights=0.0:1.0 --skip-last-layer=true \
            $dir/$lang/$[$x+1].tmp.mdl $dir/0/$[$x+1].mdl - \| \
          nnet-am-copy --learning-rates=$learning_rates - $dir/$lang/$[$x+1].mdl || exit 1;
      done
  
      $cleanup && rm $dir/*/$[$x+1].tmp.mdl
  
    fi
  
    x=$[$x+1]
  done
  
  
  for lang in $(seq 0 $[$num_lang-1]); do
    rm $dir/$lang/final.mdl 2>/dev/null
    ln -s $x.mdl $dir/$lang/final.mdl
  
  
    epoch_final_iters=
    for e in $(seq 0 $num_epochs); do
      x=$[($e*$num_archives0)/$num_jobs_nnet0] # gives the iteration number.
      ln -sf $x.mdl $dir/$lang/epoch$e.mdl
      epoch_final_iters="$epoch_final_iters $x"
    done
  
    if $cleanup; then
      echo "Removing most of the models for language $lang"
      for x in `seq 0 $num_iters`; do
        if ! echo $epoch_final_iters | grep -w $x >/dev/null; then 
          # if $x is not an epoch-final iteration..
          rm $dir/$lang/$x.mdl 2>/dev/null
        fi
      done
    fi
  done
  
  
  echo Done