Blame view
egs/wsj/s5/steps/nnet2/train_more.sh
12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
#!/bin/bash # Copyright 2014 Johns Hopkins University (Author: Daniel Povey). # Apache 2.0. # This script further trains an already-existing neural network, # given an existing model and an examples (egs/) directory. # The number of parallel jobs (--num-jobs-nnet) is determined by the # egs directory. # Begin configuration section. cmd=run.pl num_epochs=10 # Number of epochs of training; number of iterations is # worked out from this. num_iters_final=20 # Maximum number of final iterations to give to the # optimization over the validation set. learning_rate_factor=1.0 # You can use this to gradually decrease the learning # rate during training (e.g. use 0.2); the initial # learning rates are as specified in the model, but it # will decrease slightly on each iteration to achieve # this ratio. combine=true # controls whether or not to do the final model combination. combine_regularizer=1.0e-14 # Small regularizer so that parameters won't go crazy. minibatch_size=128 # by default use a smallish minibatch size for neural net # training; this controls instability which would otherwise # be a problem with multi-threaded update. Note: it also # interacts with the "preconditioned" update which generally # works better with larger minibatch size, so it's not # completely cost free. shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples # on each iter. You could set it to 0 or to a large value for complete # randomization, but this would both consume memory and cause spikes in # disk I/O. Smaller is easier on disk and memory but less random. It's # not a huge deal though, as samples are anyway randomized right at the start. mix_up=0 stage=-5 num_threads=16 parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know. # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads. cleanup=true remove_egs=false prior_subset_size=10000 # 10k samples per job, for computing priors. Should be # more than enough. # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: $0 [opts] <input-model> <egs-dir> <exp-dir>" echo " e.g.: $0 exp/nnet4c/final.mdl exp/nnet4c/egs exp/nnet5c/" echo "see also the older script update_nnet.sh which creates the egs itself" echo "You probably now want to use train_more2.sh, which uses the newer," echo "more compact egs format." echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|15> # Number of epochs of training" echo " # while reducing learning rate (determines #iterations, together" echo " # with --samples-per-iter and --num-jobs-nnet)" echo " --learning-rate-factor<factor|1.0> # Factor (e.g. 0.2) by which to change learning rate" echo " # during the course of training" echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results" echo " # as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... " echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads" echo " # should not get too large, e.g. >2k)." echo " --num-iters-final <#iters|20> # Number of final iterations to give to nnet-combine-fast to " echo " # interpolate parameters (the weights are learned with a validation set)" echo " --mix-up <#mix|0> # If specified, add quasi-targets, analogous to a mixture of Gaussians vs." echo " # single Gaussians. Only do this if not already mixed-up." echo " --combine <true or false|true> # If true, do the final nnet-combine-fast stage." echo " --stage <stage|-5> # Used to run a partially-completed training process from somewhere in" echo " # the middle." exit 1; fi input_mdl=$1 egs_dir=$2 dir=$3 # Check some files. for f in $input_mdl $egs_dir/egs.1.0.ark; do [ ! -f $f ] && echo "$0: expected file $f to exist." && exit 1; done mkdir -p $dir/log # Copy some things from the directory where the input model is located, to the # experimental directory, if they exist. These might be needed for things like # decoding. input_dir=$(dirname $input_mdl); for f in tree splice_opts cmvn_opts final.mat; do if [ -f $input_dir/$f ]; then cp $input_dir/$f $dir/ fi done iters_per_epoch=$(cat $egs_dir/iters_per_epoch) || exit 1; num_jobs_nnet=$(cat $egs_dir/num_jobs_nnet) || exit 1; num_iters=$[$num_epochs * $iters_per_epoch]; per_iter_learning_rate_factor=$(perl -e "print ($learning_rate_factor ** (1.0 / $num_iters));") echo "$0: Will train for $num_epochs epochs, equalling $num_iters iterations." mix_up_iter=$[$num_iters/2] if [ $num_threads -eq 1 ]; then train_suffix="-simple" # this enables us to use GPU code if # we have just one thread. if ! cuda-compiled; then echo "$0: WARNING: you are running with one thread but you have not compiled" echo " for CUDA. You may be running a setup optimized for GPUs. If you have" echo " GPUs and have nvcc installed, go to src/ and do ./configure; make" fi else train_suffix="-parallel --num-threads=$num_threads" fi cp $input_mdl $dir/0.mdl || exit 1; x=0 while [ $x -lt $num_iters ]; do if [ $x -ge 0 ] && [ $stage -le $x ]; then # Set off jobs doing some diagnostics, in the background. $cmd $dir/log/compute_prob_valid.$x.log \ nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs & $cmd $dir/log/compute_prob_train.$x.log \ nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs & if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then $cmd $dir/log/progress.$x.log \ nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs & fi echo "Training neural net (pass $x)" $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \ nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \ ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \ nnet-train$train_suffix --minibatch-size=$minibatch_size --srand=$x $dir/$x.mdl \ ark:- $dir/$[$x+1].JOB.mdl \ || exit 1; nnets_list= for n in `seq 1 $num_jobs_nnet`; do nnets_list="$nnets_list $dir/$[$x+1].$n.mdl" done $cmd $dir/log/average.$x.log \ nnet-am-average $nnets_list - \| \ nnet-am-copy --learning-rate-factor=$per_iter_learning_rate_factor - $dir/$[$x+1].mdl || exit 1; if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then # mix up. echo Mixing up from $num_leaves to $mix_up components $cmd $dir/log/mix_up.$x.log \ nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \ $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1; fi rm $nnets_list fi x=$[$x+1] done # Now do combination. # At the end, final.mdl will be a combination of the last e.g. 10 models. nnets_list=() [ $num_iters_final -gt $num_iters ] && num_iters_final=$num_iters [ "$mix_up" -gt 0 ] && [ $num_iters_final -gt $[$num_iters-$mix_up_iter] ] && \ num_iters_final=$[$num_iters-$mix_up_iter] start=$[$num_iters-$num_iters_final+1] for x in `seq $start $num_iters`; do idx=$[$x-$start] if [ $x -gt $mix_up_iter ]; then nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |" fi done if [ $stage -le $num_iters ]; then if $combine; then echo "Doing final combination to produce final.mdl" # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as # if there are many models it can give out-of-memory error; set num-threads to 8 # to speed it up (this isn't ideal...) this_num_threads=$num_threads [ $this_num_threads -lt 8 ] && this_num_threads=8 num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'` mb=$[($num_egs+$this_num_threads-1)/$this_num_threads] [ $mb -gt 512 ] && mb=512 # Setting --initial-model to a large value makes it initialize the combination # with the average of all the models. It's important not to start with a # single model, or, due to the invariance to scaling that these nonlinearities # give us, we get zero diagonal entries in the fisher matrix that # nnet-combine-fast uses for scaling, which after flooring and inversion, has # the effect that the initial model chosen gets much higher learning rates # than the others. This prevents the optimization from working well. $cmd $parallel_opts $dir/log/combine.log \ nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \ --num-threads=$this_num_threads --regularizer=$combine_regularizer \ --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \ $dir/final.mdl || exit 1; # Normalize stddev for affine or block affine layers that are followed by a # pnorm layer and then a normalize layer. $cmd $parallel_opts $dir/log/normalize.log \ nnet-normalize-stddev $dir/final.mdl $dir/final.mdl || exit 1; # Compute the probability of the final, combined model with # the same subset we used for the previous compute_probs, as the # different subsets will lead to different probs. $cmd $dir/log/compute_prob_valid.final.log \ nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs & $cmd $dir/log/compute_prob_train.final.log \ nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs & else echo "$0: --combine=false so just using last model." cp $dir/$x.mdl $dir/final.mdl fi fi if [ $stage -le $[$num_iters+1] ]; then echo "Getting average posterior for purposes of adjusting the priors." # Note: this just uses CPUs, using a smallish subset of data. rm $dir/post.*.vec 2>/dev/null $cmd JOB=1:$num_jobs_nnet $dir/log/get_post.JOB.log \ nnet-subset-egs --n=$prior_subset_size ark:$egs_dir/egs.JOB.0.ark ark:- \| \ nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \ matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.JOB.vec || exit 1; sleep 3; # make sure there is time for $dir/post.*.vec to appear. $cmd $dir/log/vector_sum.log \ vector-sum $dir/post.*.vec $dir/post.vec || exit 1; rm $dir/post.*.vec; echo "Re-adjusting priors based on computed posteriors" $cmd $dir/log/adjust_priors.log \ nnet-adjust-priors $dir/final.mdl $dir/post.vec $dir/final.mdl || exit 1; fi sleep 2 echo Done $remove_egs && steps/nnet2/remove_egs.sh $dir/egs if $cleanup; then echo Removing most of the models for x in `seq 0 $num_iters`; do if [ $[$x%100] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then # delete all but every 100th model; don't delete the ones which combine to form the final model. rm $dir/$x.mdl fi done fi |