Blame view

egs/wsj/s5/steps/nnet2/train_more2.sh 15.7 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  #!/bin/bash
  
  # Copyright 2014  Johns Hopkins University (Author: Daniel Povey). 
  # Apache 2.0.
  
  # This script further trains an already-existing neural network,
  # given an existing model and an examples (egs/) directory.
  # This version of the script epects an egs/ directory in the newer
  # format, as created by get_egs2.sh.
  #
  
  # Begin configuration section.
  cmd=run.pl
  num_epochs=10      # Number of epochs of training; number of iterations is
                     # worked out from this.
  num_iters_final=20 # Maximum number of final iterations to give to the
                    # optimization over the validation set.
  learning_rate_factor=1.0 # You can use this to gradually decrease the learning
                           # rate during training (e.g. use 0.2); the initial
                           # learning rates are as specified in the model, but it
                           # will decrease slightly on each iteration to achieve
                           # this ratio.
  
  combine=true # controls whether or not to do the final model combination.
  combine_regularizer=1.0e-14 # Small regularizer so that parameters won't go crazy.
  max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
    # to the final 'combine' stage, but these models will themselves be averages of
    # iteration-number ranges.
  
  minibatch_size=128 # by default use a smallish minibatch size for neural net
                     # training; this controls instability which would otherwise
                     # be a problem with multi-threaded update.  Note: it also
                     # interacts with the "preconditioned" update which generally
                     # works better with larger minibatch size, so it's not
                     # completely cost free.
  
  shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                  # on each iter.  You could set it to 0 or to a large value for complete
                  # randomization, but this would both consume memory and cause spikes in
                  # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                  # not a huge deal though, as samples are anyway randomized right at the start.
  num_jobs_nnet=4
  mix_up=0
  stage=-5
  num_threads=16
  parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
     # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
  combine_num_threads=8
  cleanup=true
  prior_subset_size=10000 # 10k samples per job, for computing priors.  Should be
                          # more than enough.
  num_jobs_compute_prior=10 # these are single-threaded, run on CPU.
  remove_egs=false
  # End configuration section.
  
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  if [ $# != 3 ]; then
    echo "Usage: $0 [opts] <input-model> <egs-dir> <exp-dir>"
    echo " e.g.: $0 exp/nnet4c/final.mdl exp/nnet4c/egs exp/nnet5c/"
    echo "see also the older script update_nnet.sh which creates the egs itself"
    echo ""
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --num-epochs <#epochs|15>                        # Number of epochs of training"
    echo "                                                   # while reducing learning rate (determines #iterations, together"
    echo "                                                   # with --samples-per-iter and --num-jobs-nnet)"
    echo "  --num-jobs-nnet <#jobs|4>                        # Number of neural-net jobs to run in parallel"
    echo "  --learning-rate-factor<factor|1.0>               # Factor (e.g. 0.2) by which to change learning rate"
    echo "                                                   # during the course of training"
    echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
    echo "                                                   # as well as speed; may interact with batch size; if you increase"
    echo "                                                   # this, you may want to decrease the batch size."
    echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
    echo "                                                   # use multiple threads... "
    echo "  --minibatch-size <minibatch-size|128>            # Size of minibatch to process (note: product with --num-threads"
    echo "                                                   # should not get too large, e.g. >2k)."
    echo "  --num-iters-final <#iters|20>                    # Number of final iterations to give to nnet-combine-fast to "
    echo "                                                   # interpolate parameters (the weights are learned with a validation set)"
    echo "  --mix-up <#mix|0>                                # If specified, add quasi-targets, analogous to a mixture of Gaussians vs."
    echo "                                                   # single Gaussians.  Only do this if not already mixed-up."
    echo "  --combine <true or false|true>                   # If true, do the final nnet-combine-fast stage."
    echo "  --stage <stage|-5>                               # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."  
    exit 1;
  fi
  
  input_mdl=$1
  egs_dir=$2
  dir=$3
  
  # Check some files.
  for f in $input_mdl $egs_dir/egs.1.ark; do
    [ ! -f $f ] && echo "$0: expected file $f to exist." && exit 1;
  done
  
  mkdir -p $dir/log
  
  # Copy some things from the directory where the input model is located, to the
  # experimental directory, if they exist.  These might be needed for things like
  # decoding.
  input_dir=$(dirname $input_mdl);
  for f in tree splice_opts cmvn_opts final.mat; do
    if [ -f $input_dir/$f ]; then
      cp $input_dir/$f $dir/
    fi
  done
  
  frames_per_eg=$(cat $egs_dir/info/frames_per_eg) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
  num_archives=$(cat $egs_dir/info/num_archives) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
  
  # num_archives_expanded considers each separate label-position from
  # 0..frames_per_eg-1 to be a separate archive.
  num_archives_expanded=$[$num_archives*$frames_per_eg]
  
  if [ $num_jobs_nnet -gt $num_archives_expanded ]; then
    echo "$0: --num-jobs-nnet cannot exceed num-archives*frames-per-eg which is $num_archives_expanded"
    echo "$0: setting --num-jobs-nnet to $num_archives_expanded"
    num_jobs_nnet=$num_archives_expanded
  fi
  
  
  # set num_iters so that as close as possible, we process the data $num_epochs
  # times, i.e. $num_iters*$num_jobs_nnet == $num_epochs*$num_archives_expanded
  num_iters=$[($num_epochs*$num_archives_expanded)/$num_jobs_nnet]
  
  echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
  
  per_iter_learning_rate_factor=$(perl -e "print ($learning_rate_factor ** (1.0 / $num_iters));")
  
  mix_up_iter=$[$num_iters/4]  # mix up after only a short way into training, as
                               # most likely the net is already quite well trained.
  
  if [ $num_threads -eq 1 ]; then
    parallel_suffix="-simple" # this enables us to use GPU code if
                           # we have just one thread.
    parallel_train_opts=
    if ! cuda-compiled; then
      echo "$0: WARNING: you are running with one thread but you have not compiled"
      echo "   for CUDA.  You may be running a setup optimized for GPUs.  If you have"
      echo "   GPUs and have nvcc installed, go to src/ and do ./configure; make"
    fi
  else
    parallel_suffix="-parallel"
    parallel_train_opts="--num-threads=$num_threads"
  fi
  
  
  approx_iters_per_epoch=$[$num_iters/$num_epochs]
  # First work out how many models we want to combine over in the final
  # nnet-combine-fast invocation.  This equals
  # min(max(max_models_combine, iters_per_epoch),
  #     2/3 * iters_after_mixup)
  num_models_combine=$max_models_combine
  if [ $num_models_combine -lt $approx_iters_per_epoch ]; then
    num_models_combine=$approx_iters_per_epoch
  fi
  iters_after_mixup_23=$[(($num_iters-$mix_up_iter-1)*2)/3]
  if [ $num_models_combine -gt $iters_after_mixup_23 ]; then
    num_models_combine=$iters_after_mixup_23
  fi
  first_model_combine=$[$num_iters-$num_models_combine+1]
  
  cp $input_mdl $dir/0.mdl || exit 1;
  
  x=0
  
  while [ $x -lt $num_iters ]; do
    if [ $x -ge 0 ] && [ $stage -le $x ]; then
      # Set off jobs doing some diagnostics, in the background.
      $cmd $dir/log/compute_prob_valid.$x.log \
        nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs &
      $cmd $dir/log/compute_prob_train.$x.log \
        nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
      if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
        $cmd $dir/log/progress.$x.log \
          nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs &
      fi
      
      echo "Training neural net (pass $x)"
  
      rm $dir/.error 2>/dev/null
      ( # this sub-shell is so that when we "wait" below,
        # we only wait for the training jobs that we just spawned,
        # not the diagnostic jobs that we spawned above.
        
        # We can't easily use a single parallel SGE job to do the main training,
        # because the computation of which archive and which --frame option
        # to use for each job is a little complex, so we spawn each one separately.
        for n in $(seq $num_jobs_nnet); do
          k=$[$x*$num_jobs_nnet + $n - 1]; # k is a zero-based index that we'll derive
                                           # the other indexes from.
          archive=$[($k%$num_archives)+1]; # work out the 1-based archive index.
          frame=$[(($k/$num_archives)%$frames_per_eg)]; # work out the 0-based frame
          # index; this increases more slowly than the archive index because the
          # same archive with different frame indexes will give similar gradients,
          # so we want to separate them in time.
  
          $cmd $parallel_opts $dir/log/train.$x.$n.log \
            nnet-train$parallel_suffix $parallel_train_opts \
            --minibatch-size=$minibatch_size --srand=$x $dir/$x.mdl \
            "ark,bg:nnet-copy-egs --frame=$frame ark:$egs_dir/egs.$archive.ark ark:-|nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-|" \
            $dir/$[$x+1].$n.mdl || touch $dir/.error &
        done
        wait
      )
      # the error message below is not that informative, but $cmd will
      # have printed a more specific one.
      [ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;
  
      nnets_list=
      for n in `seq 1 $num_jobs_nnet`; do
        nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
      done     
  
      $cmd $dir/log/average.$x.log \
        nnet-am-average $nnets_list - \| \
        nnet-am-copy --learning-rate-factor=$per_iter_learning_rate_factor - $dir/$[$x+1].mdl || exit 1;
  
      if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
        # mix up.
        echo Mixing up from $num_leaves to $mix_up components
        $cmd $dir/log/mix_up.$x.log \
          nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
           $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
      fi
      rm $nnets_list
    fi
    x=$[$x+1]
  done
  
  
  if [ $stage -le $num_iters ]; then
    echo "Doing final combination to produce final.mdl"
  
    # Now do combination.
    nnets_list=()
    # the if..else..fi statement below sets 'nnets_list'.
    if [ $max_models_combine -lt $num_models_combine ]; then
      # The number of models to combine is too large, e.g. > 20.  In this case,
      # each argument to nnet-combine-fast will be an average of multiple models.
      cur_offset=0 # current offset from first_model_combine.
      for n in $(seq $max_models_combine); do
        next_offset=$[($n*$num_models_combine)/$max_models_combine]
        sub_list="" 
        for o in $(seq $cur_offset $[$next_offset-1]); do
          iter=$[$first_model_combine+$o]
          mdl=$dir/$iter.mdl
          [ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
          sub_list="$sub_list $mdl"
        done
        nnets_list[$[$n-1]]="nnet-am-average $sub_list - |"
        cur_offset=$next_offset
      done
    else
      nnets_list=
      for n in $(seq 0 $[num_models_combine-1]); do
        iter=$[$first_model_combine+$n]
        mdl=$dir/$iter.mdl
        [ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
        nnets_list[$n]=$mdl
      done
    fi
  
  
    # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
    # if there are many models it can give out-of-memory error; set num-threads to 8
    # to speed it up (this isn't ideal...)
    num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
    mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
    [ $mb -gt 512 ] && mb=512
    # Setting --initial-model to a large value makes it initialize the combination
    # with the average of all the models.  It's important not to start with a
    # single model, or, due to the invariance to scaling that these nonlinearities
    # give us, we get zero diagonal entries in the fisher matrix that
    # nnet-combine-fast uses for scaling, which after flooring and inversion, has
    # the effect that the initial model chosen gets much higher learning rates
    # than the others.  This prevents the optimization from working well.
    $cmd $combine_parallel_opts $dir/log/combine.log \
      nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
        --num-threads=$combine_num_threads \
        --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
        $dir/final.mdl || exit 1;
  
    # Normalize stddev for affine or block affine layers that are followed by a
    # pnorm layer and then a normalize layer.
    $cmd $dir/log/normalize.log \
      nnet-normalize-stddev $dir/final.mdl $dir/final.mdl || exit 1;
  
    # Compute the probability of the final, combined model with
    # the same subset we used for the previous compute_probs, as the
    # different subsets will lead to different probs.
    $cmd $dir/log/compute_prob_valid.final.log \
      nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs &
    $cmd $dir/log/compute_prob_train.final.log \
      nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs &
  fi
  
  if [ $stage -le $[$num_iters+1] ]; then
    echo "Getting average posterior for purposes of adjusting the priors."
    # Note: this just uses CPUs, using a smallish subset of data.
    rm $dir/post.$x.*.vec 2>/dev/null
    $cmd JOB=1:$num_jobs_compute_prior $dir/log/get_post.$x.JOB.log \
      nnet-copy-egs --frame=random --srand=JOB ark:$egs_dir/egs.1.ark ark:- \| \
      nnet-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
      nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \
      matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;
  
    sleep 3;  # make sure there is time for $dir/post.$x.*.vec to appear.
  
    $cmd $dir/log/vector_sum.$x.log \
     vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
  
    rm $dir/post.$x.*.vec;
  
    echo "Re-adjusting priors based on computed posteriors"
    $cmd $dir/log/adjust_priors.final.log \
      nnet-adjust-priors $dir/final.mdl $dir/post.$x.vec $dir/final.mdl || exit 1;
  fi
  
  
  if [ ! -f $dir/final.mdl ]; then
    echo "$0: $dir/final.mdl does not exist."
    # we don't want to clean up if the training didn't succeed.
    exit 1;
  fi
  
  sleep 2
  
  echo Done
  
  if $cleanup; then
    echo Cleaning up data
    if $remove_egs && [[ $egs_dir =~ $dir/egs* ]]; then
      steps/nnet2/remove_egs.sh $egs_dir
    fi
  
    echo Removing most of the models
    for x in `seq 0 $num_iters`; do
      if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then
         # delete all but every 100th model; don't delete the ones which combine to form the final model.
        rm $dir/$x.mdl
      fi
    done
  fi