Blame view
egs/wsj/s5/steps/nnet2/train_tanh_fast.sh
21.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
#!/bin/bash # Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script trains a fairly vanilla network with tanh nonlinearities. # train_tanh_fast.sh is a new, improved version of train_tanh.sh, which uses # the 'online' preconditioning method. For GPUs it's about two times faster # than before (although that's partly due to optimizations that will also help # the old recipe), and for CPUs it gives better performance than the old method # (I believe); also, the difference in optimization performance between CPU and # GPU is almost gone. The old train_tanh.sh script is now deprecated. # We made this a separate script because not all of the options that the # old script accepted, are still accepted. # Begin configuration section. cmd=run.pl num_epochs=15 # Number of epochs during which we reduce # the learning rate; number of iteration is worked out from this. num_epochs_extra=5 # Number of epochs after we stop reducing # the learning rate. num_iters_final=20 # Maximum number of final iterations to give to the # optimization over the validation set. initial_learning_rate=0.04 final_learning_rate=0.004 bias_stddev=0.5 shrink_interval=5 # shrink every $shrink_interval iters except while we are # still adding layers, when we do it every iter. shrink=true num_frames_shrink=2000 # note: must be <= --num-frames-diagnostic option to get_egs.sh, if # given. final_learning_rate_factor=0.5 # Train the two last layers of parameters half as # fast as the other layers, by default. hidden_layer_dim=300 # You may want this larger, e.g. 1024 or 2048. minibatch_size=128 # by default use a smallish minibatch size for neural net # training; this controls instability which would otherwise # be a problem with multi-threaded update. samples_per_iter=200000 # each iteration of training, see this many samples # per job. This option is passed to get_egs.sh. num_jobs_nnet=8 # Number of neural net jobs to run in parallel. This option # is passed to get_egs.sh. get_egs_stage=0 shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of # the samples on each iter. You could set it to 0 or to a large # value for complete randomization, but this would both consume # memory and cause spikes in disk I/O. Smaller is easier on # disk and memory but less random. It's not a huge deal though, # as samples are anyway randomized right at the start. add_layers_period=2 # by default, add new layers every 2 iterations. num_hidden_layers=3 # This is an important configuration value that you might # want to tune. stage=-5 io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. These don't splice_width=4 # meaning +- 4 frames on each side for second LDA randprune=4.0 # speeds up LDA. alpha=4.0 # relates to preconditioning. update_period=4 # relates to online preconditioning: says how often we update the subspace. num_samples_history=2000 # relates to online preconditioning max_change_per_sample=0.075 # we make the [input, output] ranks less different for the tanh setup than for # the pnorm setup, as we don't have the difference in dimensions to deal with. precondition_rank_in=30 # relates to online preconditioning precondition_rank_out=60 # relates to online preconditioning mix_up=0 # Number of components to mix up to (should be > #tree leaves, if # specified.) num_threads=16 parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know. # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads. combine_parallel_opts="--num-threads 8" # queue options for the "combine" stage. combine_num_threads=8 cleanup=true egs_dir= lda_opts= egs_opts= transform_dir= cmvn_opts= # will be passed to get_lda.sh and get_egs.sh, if supplied. # only relevant for "raw" features, not lda. feat_type= # Can be used to force "raw" features. prior_subset_size=10000 # 10k samples per job, for computing priors. Should be # more than enough. # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>" echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --num-epochs <#epochs|15> # Number of epochs of main training" echo " # while reducing learning rate (determines #iterations, together" echo " # with --samples-per-iter and --num-jobs-nnet)" echo " --num-epochs-extra <#epochs-extra|5> # Number of extra epochs of training" echo " # after learning rate fully reduced" echo " --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small" echo " # data, 0.01 for large data" echo " --final-learning-rate <final-learning-rate|0.004> # Learning rate at end of training, e.g. 0.004 for small" echo " # data, 0.001 for large data" echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs" echo " --initial-num-hidden-layers <#hidden-layers|1> # Number of hidden layers to start with." echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers" echo " --mix-up <#pseudo-gaussians|0> # Can be used to have multiple targets in final output layer," echo " # per context-dependent state. Try a number several times #states." echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net" echo " # training (will affect results as well as speed; try 8, 16)" echo " # Note: if you increase this, you may want to also increase" echo " # the learning rate." echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results" echo " # as well as speed; may interact with batch size; if you increase" echo " # this, you may want to decrease the batch size." echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that" echo " # use multiple threads... " echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O." echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads" echo " # should not get too large, e.g. >2k)." echo " --samples-per-iter <#samples|200000> # Number of samples of data to process per iteration, per" echo " # process." echo " --splice-width <width|4> # Number of frames on each side to append for feature input" echo " # (note: we splice processed, typically 40-dimensional frames" echo " --lda-dim <dim|250> # Dimension to reduce spliced features to with LDA" echo " --num-iters-final <#iters|20> # Number of final iterations to give to nnet-combine-fast to " echo " # interpolate parameters (the weights are learned with a validation set)" echo " --stage <stage|-9> # Used to run a partially-completed training process from somewhere in" echo " # the middle." exit 1; fi data=$1 lang=$2 alidir=$3 dir=$4 # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set some variables. num_leaves=`am-info $alidir/final.mdl 2>/dev/null | awk '/number of pdfs/{print $NF}'` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir... # in this dir we'll have just one job. sdata=$data/split$nj utils/split_data.sh $data $nj mkdir -p $dir/log cp $alidir/tree $dir utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; extra_opts=() [ ! -z "$cmvn_opts" ] && extra_opts+=(--cmvn-opts "$cmvn_opts") [ ! -z "$feat_type" ] && extra_opts+=(--feat-type $feat_type) [ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir) [ -z "$transform_dir" ] && transform_dir=$alidir extra_opts+=(--transform-dir $transform_dir) extra_opts+=(--splice-width $splice_width) if [ $stage -le -4 ]; then echo "$0: calling get_lda.sh" steps/nnet2/get_lda.sh $lda_opts "${extra_opts[@]}" --cmd "$cmd" $data $lang $alidir $dir || exit 1; fi # these files will have been written by get_lda.sh feat_dim=$(cat $dir/feat_dim) || exit 1; ivector_dim=$(cat $dir/ivector_dim) || exit 1; lda_dim=$(cat $dir/lda_dim) || exit 1; if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then echo "$0: calling get_egs.sh" steps/nnet2/get_egs.sh $egs_opts "${extra_opts[@]}" \ --samples-per-iter $samples_per_iter \ --num-jobs-nnet $num_jobs_nnet --stage $get_egs_stage \ --cmd "$cmd" $egs_opts --io-opts "$io_opts" \ $data $lang $alidir $dir || exit 1; fi if [ -z $egs_dir ]; then egs_dir=$dir/egs fi iters_per_epoch=`cat $egs_dir/iters_per_epoch` || exit 1; ! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \ echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir" num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1; if ! [ $num_hidden_layers -ge 1 ]; then echo "Invalid num-hidden-layers $num_hidden_layers" exit 1 fi if [ $stage -le -2 ]; then echo "$0: initializing neural net"; # Get spk-vec dim (in case we're using them). lda_mat=$dir/lda.mat tot_input_dim=$[$feat_dim+$ivector_dim] online_preconditioning_opts="alpha=$alpha num-samples-history=$num_samples_history update-period=$update_period rank-in=$precondition_rank_in rank-out=$precondition_rank_out max-change-per-sample=$max_change_per_sample" stddev=`perl -e "print 1.0/sqrt($hidden_layer_dim);"` cat >$dir/nnet.config <<EOF SpliceComponent input-dim=$tot_input_dim left-context=$splice_width right-context=$splice_width const-component-dim=$ivector_dim FixedAffineComponent matrix=$lda_mat AffineComponentPreconditionedOnline input-dim=$lda_dim output-dim=$hidden_layer_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev TanhComponent dim=$hidden_layer_dim AffineComponentPreconditionedOnline input-dim=$hidden_layer_dim output-dim=$num_leaves $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0 SoftmaxComponent dim=$num_leaves EOF # to hidden.config it will write the part of the config corresponding to a # single hidden layer; we need this to add new layers. cat >$dir/hidden.config <<EOF AffineComponentPreconditionedOnline input-dim=$hidden_layer_dim output-dim=$hidden_layer_dim $online_preconditioning_opts learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev TanhComponent dim=$hidden_layer_dim EOF $cmd $dir/log/nnet_init.log \ nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \ $dir/0.mdl || exit 1; fi if [ $stage -le -1 ]; then echo "Training transition probabilities and setting priors" $cmd $dir/log/train_trans.log \ nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \ || exit 1; fi num_iters_reduce=$[$num_epochs * $iters_per_epoch]; num_iters_extra=$[$num_epochs_extra * $iters_per_epoch]; num_iters=$[$num_iters_reduce+$num_iters_extra] echo "$0: Will train for $num_epochs + $num_epochs_extra epochs, equalling " echo "$0: $num_iters_reduce + $num_iters_extra = $num_iters iterations, " echo "$0: (while reducing learning rate) + (with constant learning rate)." # This is when we decide to mix up from: halfway between when we've finished # adding the hidden layers and the end of training. finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period] mix_up_iter=$[($num_iters + $finish_add_layers_iter)/2] if [ $num_threads -eq 1 ]; then train_suffix="-simple" # this enables us to use GPU code if # we have just one thread. if ! cuda-compiled; then echo "$0: WARNING: you are running with one thread but you have not compiled" echo " for CUDA. You may be running a setup optimized for GPUs. If you have" echo " GPUs and have nvcc installed, go to src/ and do ./configure; make" fi else train_suffix="-parallel --num-threads=$num_threads" fi x=0 while [ $x -lt $num_iters ]; do if [ $x -ge 0 ] && [ $stage -le $x ]; then # Set off jobs doing some diagnostics, in the background. $cmd $dir/log/compute_prob_valid.$x.log \ nnet-compute-prob $dir/$x.mdl ark:$egs_dir/valid_diagnostic.egs & $cmd $dir/log/compute_prob_train.$x.log \ nnet-compute-prob $dir/$x.mdl ark:$egs_dir/train_diagnostic.egs & if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then $cmd $dir/log/progress.$x.log \ nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl \ ark:$egs_dir/train_diagnostic.egs '&&' \ nnet-am-info $dir/$x.mdl & fi echo "Training neural net (pass $x)" if [ $x -gt 0 ] && \ [ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \ [ $[($x-1) % $add_layers_period] -eq 0 ]; then mdl="nnet-init --srand=$x $dir/hidden.config - | nnet-insert $dir/$x.mdl - - |" else mdl=$dir/$x.mdl fi if [ $x -eq 0 ] || [ "$mdl" != "$dir/$x.mdl" ]; then # on iteration zero or when we just added a layer, use a smaller minibatch # size and just one job: the model-averaging doesn't seem to be helpful # when the model is changing too fast (i.e. it worsens the objective # function), and the smaller minibatch size will help to keep # the update stable. this_minibatch_size=$[$minibatch_size/2]; do_average=false else this_minibatch_size=$minibatch_size do_average=true fi $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \ nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \ ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \ nnet-train$train_suffix \ --minibatch-size=$this_minibatch_size --srand=$x "$mdl" \ ark:- $dir/$[$x+1].JOB.mdl \ || exit 1; nnets_list= for n in `seq 1 $num_jobs_nnet`; do nnets_list="$nnets_list $dir/$[$x+1].$n.mdl" done learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`; last_layer_learning_rate=`perl -e "print $learning_rate * $final_learning_rate_factor;"`; nnet-am-info $dir/$[$x+1].1.mdl > $dir/foo 2>/dev/null || exit 1 nu=`cat $dir/foo | grep num-updatable-components | awk '{print $2}'` na=`cat $dir/foo | grep -v Fixed | grep AffineComponent | wc -l` # na is number of last updatable AffineComponent layer [one-based, counting only # updatable components.] # The last two layers will get this (usually lower) learning rate. lr_string="$learning_rate" for n in `seq 2 $nu`; do if [ $n -eq $na ] || [ $n -eq $[$na-1] ]; then lr=$last_layer_learning_rate; else lr=$learning_rate; fi lr_string="$lr_string:$lr" done if $do_average; then $cmd $dir/log/average.$x.log \ nnet-am-average $nnets_list - \| \ nnet-am-copy --learning-rates=$lr_string - $dir/$[$x+1].mdl || exit 1; else n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) { $fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn"; undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } } close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob; $best_n=$n; } } print "$best_n "; ' $num_jobs_nnet $dir/log/train.$x.%d.log) || exit 1; [ -z "$n" ] && echo "Error getting best model" && exit 1; $cmd $dir/log/select.$x.log \ nnet-am-copy --learning-rates=$lr_string $dir/$[$x+1].$n.mdl $dir/$[$x+1].mdl || exit 1; fi if $shrink && [ $[$x % $shrink_interval] -eq 0 ]; then mb=$[($num_frames_shrink+$num_threads-1)/$num_threads] $cmd $combine_parallel_opts $dir/log/shrink.$x.log \ nnet-subset-egs --n=$num_frames_shrink --randomize-order=true --srand=$x \ ark:$egs_dir/train_diagnostic.egs ark:- \| \ nnet-combine-fast --use-gpu=no --num-threads=$combine_num_threads \ --verbose=3 --minibatch-size=$mb \ $dir/$[$x+1].mdl ark:- $dir/$[$x+1].mdl || exit 1; else # On other iters, do nnet-am-fix which is much faster and has roughly # the same effect. nnet-am-fix $dir/$[$x+1].mdl $dir/$[$x+1].mdl 2>$dir/log/fix.$x.log fi if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then # mix up. echo Mixing up from $num_leaves to $mix_up components $cmd $dir/log/mix_up.$x.log \ nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \ $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1; fi rm $nnets_list fi x=$[$x+1] done # Now do combination. # At the end, final.mdl will be a combination of the last e.g. 10 models. nnets_list=() if [ $num_iters_final -gt $num_iters_extra ]; then echo "Setting num_iters_final=$num_iters_extra" fi start=$[$num_iters-$num_iters_final+1] for x in `seq $start $num_iters`; do idx=$[$x-$start] if [ $x -gt $mix_up_iter ]; then nnets_list[$idx]=$dir/$x.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |" fi done if [ $stage -le $num_iters ]; then echo "Doing final combination to produce final.mdl" # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as if # there are many models it can give out-of-memory error on the GPU; set # num-threads to 8 to speed it up (this isn't ideal...) num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'` mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads] [ $mb -gt 512 ] && mb=512 $cmd $combine_parallel_opts $dir/log/combine.log \ nnet-combine-fast --use-gpu=no --num-threads=$combine_num_threads \ --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \ $dir/final.mdl || exit 1; # Compute the probability of the final, combined model with # the same subset we used for the previous compute_probs, as the # different subsets will lead to different probs. $cmd $dir/log/compute_prob_valid.final.log \ nnet-compute-prob $dir/final.mdl ark:$egs_dir/valid_diagnostic.egs & $cmd $dir/log/compute_prob_train.final.log \ nnet-compute-prob $dir/final.mdl ark:$egs_dir/train_diagnostic.egs & fi if [ $stage -le $[$num_iters+1] ]; then echo "Getting average posterior for purposes of adjusting the priors." # Note: this just uses CPUs, using a smallish subset of data. rm $dir/post.*.vec 2>/dev/null $cmd JOB=1:$num_jobs_nnet $dir/log/get_post.JOB.log \ nnet-subset-egs --n=$prior_subset_size ark:$egs_dir/egs.JOB.0.ark ark:- \| \ nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \ matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.JOB.vec || exit 1; sleep 3; # make sure there is time for $dir/post.*.vec to appear. $cmd $dir/log/vector_sum.log \ vector-sum $dir/post.*.vec $dir/post.vec || exit 1; rm $dir/post.*.vec; echo "Re-adjusting priors based on computed posteriors" $cmd $dir/log/adjust_priors.log \ nnet-adjust-priors $dir/final.mdl $dir/post.vec $dir/final.mdl || exit 1; fi sleep 2 echo Done if $cleanup; then echo Cleaning up data if [ $egs_dir == "$dir/egs" ]; then steps/nnet2/remove_egs.sh $dir/egs fi echo Removing most of the models for x in `seq 0 $num_iters`; do if [ $[$x%100] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then # delete all but every 10th model; don't delete the ones which combine to form the final model. rm $dir/$x.mdl fi done fi |