Blame view
egs/wsj/s5/steps/nnet3/chain/e2e/get_egs_e2e.sh
18.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
#!/bin/bash # Copyright 2012-2015 Johns Hopkins University (Author: Daniel Povey) # Copyright 2017 Hossein Hadian # Apache 2.0. # # This is simlilar to chain/get_egs.sh except it # uses training FSTs (instead of lattices) to generate end2end egs. # It calls nnet3-chain-e2e-get-egs binary # Begin configuration section. cmd=run.pl normalize_egs=true feat_type=raw # set it to 'lda' to use LDA features. frame_subsampling_factor=3 # frames-per-second of features we train on divided # by frames-per-second at output of chain model left_context=4 # amount of left-context per eg (i.e. extra frames of input features # not present in the output supervision). right_context=4 # amount of right-context per eg. left_context_initial=-1 # if >=0, left-context for first chunk of an utterance right_context_final=-1 # if >=0, right-context for last chunk of an utterance compress=true # set this to false to disable compression (e.g. if you want to see whether # results are affected). num_utts_subset=1400 # number of utterances in validation and training # subsets used for shrinkage and diagnostics. num_valid_egs_combine=0 # #validation examples for combination weights at the very end. num_train_egs_combine=250 # number of train examples for the above. num_egs_diagnostic=300 # number of frames for "compute_prob" jobs frames_per_iter=400000 # each iteration of training, see this many frames per # job, measured at the sampling rate of the features # used. This is just a guideline; it will pick a number # that divides the number of samples in the entire data. stage=0 nj=15 # This should be set to the maximum number of jobs you are # comfortable to run in parallel; you can increase it if your disk # speed is greater and you have more machines. max_shuffle_jobs_run=50 # the shuffle jobs now include the nnet3-chain-normalize-egs command, # which is fairly CPU intensive, so we can run quite a few at once # without overloading the disks. srand=0 # rand seed for nnet3-chain-get-egs, nnet3-chain-copy-egs and nnet3-chain-shuffle-egs online_ivector_dir= # can be used if we are including speaker information as iVectors. cmvn_opts= # can be used for specifying CMVN options, if feature type is not lda (if lda, # it doesn't make sense to use different options than were used as input to the # LDA transform). This is used to turn off CMVN in the online-nnet experiments. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: $0 [opts] <data> <chain-dir> <fsts-dir> <egs-dir>" echo " e.g.: $0 data/train exp/chain/e2e exp/chain/e2e/egs" echo "" echo "From <chain-dir>, 0.trans_mdl (the transition-model), tree (the tree)" echo "and normalization.fst (the normalization FST, derived from the denominator FST)" echo "are read." echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --nj <nj> # The maximum number of jobs you want to run in" echo " # parallel (increase this only if you have good disk and" echo " # network speed). default=6" echo " --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs." echo " --frames-per-iter <#samples;400000> # Number of frames of data to process per iteration, per" echo " # process." echo " --feat-type <lda|raw> # (raw is the default). The feature type you want" echo " # to use as input to the neural net." echo " --frame-subsampling-factor <factor;3> # factor by which num-frames at nnet output is reduced " echo " --left-context <int;4> # Number of frames on left side to append for feature input" echo " --right-context <int;4> # Number of frames on right side to append for feature input" echo " --left-context-initial <int;-1> # If >= 0, left-context for first chunk of an utterance" echo " --right-context-final <int;-1> # If >= 0, right-context for last chunk of an utterance" echo " --num-egs-diagnostic <#frames;4000> # Number of egs used in computing (train,valid) diagnostics" echo " --num-valid-egs-combine <#frames;10000> # Number of egss used in getting combination weights at the" echo " # very end." echo " --stage <stage|0> # Used to run a partially-completed training process from somewhere in" echo " # the middle." exit 1; fi data=$1 chaindir=$2 fstdir=$3 dir=$4 # Check some files. [ ! -z "$online_ivector_dir" ] && \ extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period" for f in $data/feats.scp $data/allowed_lengths.txt \ $chaindir/{0.trans_mdl,tree,normalization.fst} $extra_files; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj utils/split_data.sh $data $nj mkdir -p $dir/log $dir/info # Get list of validation utterances. frame_shift=$(utils/data/get_frame_shift.sh $data) utils/data/get_utt2dur.sh $data frames_per_eg=$(cat $data/allowed_lengths.txt | tr ' ' , | sed 's/,$//') [ ! -f "$data/utt2len" ] && feat-to-len scp:$data/feats.scp ark,t:$data/utt2len cat $data/utt2len | \ awk '{print $1}' | \ utils/shuffle_list.pl 2>/dev/null | head -$num_utts_subset > $dir/valid_uttlist len_uttlist=`wc -l $dir/valid_uttlist | awk '{print $1}'` if [ $len_uttlist -lt $num_utts_subset ]; then echo "Number of utterances which have length at least $frames_per_eg is really low. Please check your data." && exit 1; fi if [ -f $data/utt2uniq ]; then # this matters if you use data augmentation. # because of this stage we can again have utts with lengths less than # frames_per_eg echo "File $data/utt2uniq exists, so augmenting valid_uttlist to" echo "include all perturbed versions of the same 'real' utterances." mv $dir/valid_uttlist $dir/valid_uttlist.tmp utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \ sort | uniq | utils/apply_map.pl $dir/uniq2utt | \ awk '{for(n=1;n<=NF;n++) print $n;}' | sort > $dir/valid_uttlist rm $dir/uniq2utt $dir/valid_uttlist.tmp fi # awk -v mf_len=222 '{if ($2 == mf_len) print $1}' | \ cat $data/utt2len | \ awk '{print $1}' | \ utils/filter_scp.pl --exclude $dir/valid_uttlist | \ utils/shuffle_list.pl 2>/dev/null | head -$num_utts_subset > $dir/train_subset_uttlist len_uttlist=`wc -l $dir/train_subset_uttlist | awk '{print $1}'` if [ $len_uttlist -lt $num_utts_subset ]; then echo "Number of utterances which have length at least $frames_per_eg is really low. Please check your data." && exit 1; fi ## Set up features. echo "$0: feature type is $feat_type" case $feat_type in raw) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |" valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" echo $cmvn_opts >$dir/cmvn_opts # caution: the top-level nnet training script should copy this to its own dir now. ;; *) echo "$0: invalid feature type --feat-type '$feat_type'" && exit 1; esac if [ ! -z "$online_ivector_dir" ]; then ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1; echo $ivector_dim > $dir/info/ivector_dim steps/nnet2/get_ivector_id.sh $online_ivector_dir > $dir/info/final.ie.id || exit 1 ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1; ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period" else ivector_opts="" echo 0 >$dir/info/ivector_dim fi if [ $stage -le 1 ]; then echo "$0: working out number of frames of training data" num_frames=$(steps/nnet2/get_num_frames.sh $data) echo $num_frames > $dir/info/num_frames echo "$0: working out feature dim" feats_one="$(echo $feats | sed s/JOB/1/g)" if ! feat_dim=$(feat-to-dim "$feats_one" - 2>/dev/null); then echo "Command failed (getting feature dim): feat-to-dim \"$feats_one\"" exit 1 fi echo $feat_dim > $dir/info/feat_dim else num_frames=$(cat $dir/info/num_frames) || exit 1; feat_dim=$(cat $dir/info/feat_dim) || exit 1; fi # the + 1 is to round up, not down... we assume it doesn't divide exactly. num_archives=$[$num_frames/$frames_per_iter+1] # We may have to first create a smaller number of larger archives, with number # $num_archives_intermediate, if $num_archives is more than the maximum number # of open filehandles that the system allows per process (ulimit -n). max_open_filehandles=500 #$(ulimit -n) || exit 1 num_archives_intermediate=$num_archives archives_multiple=1 while [ $[$num_archives_intermediate+4] -gt $max_open_filehandles ]; do archives_multiple=$[$archives_multiple+1] num_archives_intermediate=$[$num_archives/$archives_multiple] || exit 1; done # now make sure num_archives is an exact multiple of archives_multiple. num_archives=$[$archives_multiple*$num_archives_intermediate] || exit 1; echo $num_archives >$dir/info/num_archives echo $frames_per_eg >$dir/info/frames_per_eg # Work out the number of egs per archive egs_per_archive=$[$num_frames/($frames_per_eg*$num_archives)] || exit 1; ! [ $egs_per_archive -le $frames_per_iter ] && \ echo "$0: script error: egs_per_archive=$egs_per_archive not <= frames_per_iter=$frames_per_iter" \ && exit 1; echo $egs_per_archive > $dir/info/egs_per_archive echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with" echo "$0: $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)" if [ $left_context_initial -ge 0 ] || [ $right_context_final -ge 0 ]; then echo "$0: ... and (left-context-initial,right-context-final) = ($left_context_initial,$right_context_final)" fi if [ -e $dir/storage ]; then # Make soft links to storage directories, if distributing this way.. See # utils/create_split_dir.pl. echo "$0: creating data links" utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/cegs.$x.ark; done) for x in $(seq $num_archives_intermediate); do utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/cegs_orig.$y.$x.ark; done) done fi egs_opts="--left-context=$left_context --right-context=$right_context --num-frames=$frames_per_eg --frame-subsampling-factor=$frame_subsampling_factor --compress=$compress" [ $left_context_initial -ge 0 ] && egs_opts="$egs_opts --left-context-initial=$left_context_initial" [ $right_context_final -ge 0 ] && egs_opts="$egs_opts --right-context-final=$right_context_final" echo $left_context > $dir/info/left_context echo $right_context > $dir/info/right_context echo $left_context_initial > $dir/info/left_context_initial echo $right_context_final > $dir/info/right_context_final num_fst_jobs=$(cat $fstdir/num_jobs) || exit 1; for id in $(seq $num_fst_jobs); do cat $fstdir/fst.$id.scp; done > $fstdir/fst.scp if [ $stage -le 3 ]; then echo "$0: Getting validation and training subset examples." rm $dir/.error 2>/dev/null # do the filtering just once, as fst.scp may be long. utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) \ <$fstdir/fst.scp >$fstdir/fst_special.scp if $normalize_egs; then norm_opt=$chaindir/normalization.fst else norm_opt= fi $cmd $dir/log/create_valid_subset.log \ utils/filter_scp.pl $dir/valid_uttlist $fstdir/fst_special.scp \| \ fstcopy scp:- ark:- \| \ nnet3-chain-e2e-get-egs $ivector_opts --srand=$srand \ $egs_opts $norm_opt \ "$valid_feats" ark,s,cs:- $chaindir/0.trans_mdl "ark:$dir/valid_all.cegs" || touch $dir/.error & $cmd $dir/log/create_train_subset.log \ utils/filter_scp.pl $dir/train_subset_uttlist $fstdir/fst_special.scp \| \ fstcopy scp:- ark:- \| \ nnet3-chain-e2e-get-egs $ivector_opts --srand=$srand \ $egs_opts $norm_opt \ "$train_subset_feats" ark,s,cs:- $chaindir/0.trans_mdl "ark:$dir/train_subset_all.cegs" || touch $dir/.error & wait; [ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1 echo "... Getting subsets of validation examples for diagnostics and combination." $cmd $dir/log/create_valid_subset_combine.log \ nnet3-chain-subset-egs --n=$num_valid_egs_combine ark:$dir/valid_all.cegs \ ark:$dir/valid_combine.cegs || touch $dir/.error & $cmd $dir/log/create_valid_subset_diagnostic.log \ nnet3-chain-subset-egs --n=$num_egs_diagnostic ark:$dir/valid_all.cegs \ ark:$dir/valid_diagnostic.cegs || touch $dir/.error & $cmd $dir/log/create_train_subset_combine.log \ nnet3-chain-subset-egs --n=$num_train_egs_combine ark:$dir/train_subset_all.cegs \ ark:$dir/train_combine.cegs || touch $dir/.error & $cmd $dir/log/create_train_subset_diagnostic.log \ nnet3-chain-subset-egs --n=$num_egs_diagnostic ark:$dir/train_subset_all.cegs \ ark:$dir/train_diagnostic.cegs || touch $dir/.error & wait sleep 5 # wait for file system to sync. cat $dir/valid_combine.cegs $dir/train_combine.cegs > $dir/combine.cegs for f in $dir/{combine,train_diagnostic,valid_diagnostic}.cegs; do [ ! -s $f ] && echo "No examples in file $f" && exit 1; done #rm $dir/valid_all.cegs $dir/train_subset_all.cegs $dir/{train,valid}_combine.cegs #exit 0 fi echo "num_archives_intermediate:" $num_archives_intermediate echo "num_archives: $num_archives" echo "archives_multiple: $archives_multiple" if [ $stage -le 4 ]; then # create cegs_orig.*.*.ark; the first index goes to $nj, # the second to $num_archives_intermediate. egs_list= for n in $(seq $num_archives_intermediate); do egs_list="$egs_list ark:$dir/cegs_orig.JOB.$n.ark" done echo "$0: Generating training examples on disk" # The examples will go round-robin to egs_list. Note: we omit the # 'normalization.fst' argument while creating temporary egs: the phase of egs # preparation that involves the normalization FST is quite CPU-intensive and # it's more convenient to do it later, in the 'shuffle' stage. Otherwise to # make it efficient we need to use a large 'nj', like 40, and in that case # there can be too many small files to deal with, because the total number of # files is the product of 'nj' by 'num_archives_intermediate', which might be # quite large. $cmd JOB=1:$nj $dir/log/get_egs.JOB.log \ utils/filter_scp.pl $sdata/JOB/utt2spk $fstdir/fst.scp \| \ fstcopy scp:- ark:- \| \ nnet3-chain-e2e-get-egs $ivector_opts --srand=\$[JOB+$srand] $egs_opts \ "$feats" ark,s,cs:- $chaindir/0.trans_mdl ark:- \| \ nnet3-chain-copy-egs --random=true --srand=\$[JOB+$srand] ark:- $egs_list || exit 1; fi if [ $stage -le 5 ]; then echo "$0: recombining and shuffling order of archives on disk" # combine all the "egs_orig.*.JOB.scp" (over the $nj splits of the data) and # shuffle the order, writing to the egs.JOB.ark # the input is a concatenation over the input jobs. egs_list= for n in $(seq $nj); do egs_list="$egs_list $dir/cegs_orig.$n.JOB.ark" done if [ $archives_multiple == 1 ]; then # normal case. if $normalize_egs; then $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \ nnet3-chain-normalize-egs $chaindir/normalization.fst "ark:cat $egs_list|" ark:- \| \ nnet3-chain-shuffle-egs --srand=\$[JOB+$srand] ark:- ark:$dir/cegs.JOB.ark || exit 1; else $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \ nnet3-chain-shuffle-egs --srand=\$[JOB+$srand] "ark:cat $egs_list|" ark:$dir/cegs.JOB.ark || exit 1; fi else # we need to shuffle the 'intermediate archives' and then split into the # final archives. we create soft links to manage this splitting, because # otherwise managing the output names is quite difficult (and we don't want # to submit separate queue jobs for each intermediate archive, because then # the --max-jobs-run option is hard to enforce). output_archives="$(for y in $(seq $archives_multiple); do echo ark:$dir/cegs.JOB.$y.ark; done)" for x in $(seq $num_archives_intermediate); do for y in $(seq $archives_multiple); do archive_index=$[($x-1)*$archives_multiple+$y] # egs.intermediate_archive.{1,2,...}.ark will point to egs.archive.ark ln -sf cegs.$archive_index.ark $dir/cegs.$x.$y.ark || exit 1 done done $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \ nnet3-chain-normalize-egs $chaindir/normalization.fst "ark:cat $egs_list|" ark:- \| \ nnet3-chain-shuffle-egs --srand=\$[JOB+$srand] ark:- ark:- \| \ nnet3-chain-copy-egs ark:- $output_archives || exit 1; fi fi if [ $stage -le 6 ]; then echo "$0: removing temporary archives" ( cd $dir for f in $(ls -l . | grep 'cegs_orig' | awk '{ X=NF-1; Y=NF-2; if ($X == "->") print $Y, $NF; }'); do rm $f; done # the next statement removes them if we weren't using the soft links to a # 'storage' directory. rm cegs_orig.*.ark 2>/dev/null ) if [ $archives_multiple -gt 1 ]; then # there are some extra soft links that we should delete. for f in $dir/cegs.*.*.ark; do rm $f; done fi echo "$0: removing temporary alignments" rm $dir/ali.{ark,scp} 2>/dev/null fi echo "$0: Finished preparing training examples" |