Blame view

egs/wsj/s5/steps/nnet3/decode_semisup.sh 6.51 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
  #!/bin/bash
  
  # Copyright 2012-2015  Johns Hopkins University (Author: Daniel Povey).
  # Apache 2.0.
  
  # This script does decoding with a neural-net.
  
  # Begin configuration section.
  stage=1
  nj=4 # number of decoding jobs.
  acwt=0.1  # Just a default value, used for adaptation and beam-pruning..
  post_decode_acwt=1.0  # can be used in 'chain' systems to scale acoustics by 10 so the
                        # regular scoring script works.
  cmd=run.pl
  beam=15.0
  frames_per_chunk=50
  max_active=7000
  min_active=200
  ivector_scale=1.0
  lattice_beam=8.0 # Beam we use in lattice generation.
  iter=final
  num_threads=1 # if >1, will use gmm-latgen-faster-parallel
  scoring_opts=
  skip_diagnostics=false
  skip_scoring=false
  extra_left_context=0
  extra_right_context=0
  extra_left_context_initial=-1
  extra_right_context_final=-1
  online_ivector_dir=
  minimize=false
  word_determinize=false  # If set to true, then output lattice does not retain
                          # alternate paths a sequence of words (with alternate pronunciations).
                          # Setting to true is the default in steps/nnet3/decode.sh.
                          # However, setting this to false
                          # is useful for generation w of semi-supervised training
                          # supervision and frame-level confidences.
  write_compact=true   # If set to false, then writes the lattice in non-compact format,
                       # retaining the acoustic scores on each arc. This is
                       # required to be false for LM rescoring undeterminized
                       # lattices (when --word-determinize is false)
                       # Useful for semi-supervised training with rescored lattices.
  # End configuration section.
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f ./path.sh ] && . ./path.sh; # source the path.
  . utils/parse_options.sh || exit 1;
  
  if [ $# -ne 3 ]; then
    echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>"
    echo "e.g.:   steps/nnet3/decode.sh --nj 8 \\"
    echo "--online-ivector-dir exp/nnet2_online/ivectors_test_eval92 \\"
    echo "    exp/tri4b/graph_bg data/test_eval92_hires $dir/decode_bg_eval92"
    echo "main options (for others, see top of script file)"
    echo "  --transform-dir <decoding-dir>           # directory of previous decoding"
    echo "                                           # where we can find transforms for SAT systems."
    echo "  --config <config-file>                   # config containing options"
    echo "  --nj <nj>                                # number of parallel jobs"
    echo "  --cmd <cmd>                              # Command to run in parallel with"
    echo "  --beam <beam>                            # Decoding beam; default 15.0"
    echo "  --iter <iter>                            # Iteration of model to decode; default is final."
    echo "  --scoring-opts <string>                  # options to local/score.sh"
    echo "  --num-threads <n>                        # number of threads to use, default 1."
    exit 1;
  fi
  
  graphdir=$1
  data=$2
  dir=$3
  srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
  model=$srcdir/$iter.mdl
  
  
  extra_files=
  if [ ! -z "$online_ivector_dir" ]; then
    steps/nnet2/check_ivectors_compatible.sh $srcdir $online_ivector_dir || exit 1
    extra_files="$online_ivector_dir/ivector_online.scp $online_ivector_dir/ivector_period"
  fi
  
  utils/lang/check_phones_compatible.sh {$srcdir,$graphdir}/phones.txt || exit 1
  
  for f in $graphdir/HCLG.fst $data/feats.scp $model $extra_files; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  sdata=$data/split$nj;
  cmvn_opts=`cat $srcdir/cmvn_opts` || exit 1;
  thread_string=
  [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads"
  
  mkdir -p $dir/log
  [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
  echo $nj > $dir/num_jobs
  
  
  ## Set up features.
  echo "$0: feature type is raw"
  
  feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
  
  if [ ! -z "$online_ivector_dir" ]; then
    ivector_period=$(cat $online_ivector_dir/ivector_period) || exit 1;
    ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period"
  fi
  
  extra_opts=
  lat_wspecifier="ark:|"
  if ! $write_compact; then
    extra_opts="--determinize-lattice=false"
    lat_wspecifier="ark:| lattice-determinize-phone-pruned --beam=$lattice_beam --acoustic-scale=$acwt --minimize=$minimize --word-determinize=$word_determinize --write-compact=false $model ark:- ark:- |"
  fi
  
  if [ "$post_decode_acwt" == 1.0 ]; then
    lat_wspecifier="$lat_wspecifier gzip -c >$dir/lat.JOB.gz"
  else
    lat_wspecifier="$lat_wspecifier lattice-scale --acoustic-scale=$post_decode_acwt --write-compact=$write_compact ark:- ark:- | gzip -c >$dir/lat.JOB.gz"
  fi
  
  frame_subsampling_opt=
  if [ -f $srcdir/frame_subsampling_factor ]; then
    # e.g. for 'chain' systems
    frame_subsampling_opt="--frame-subsampling-factor=$(cat $srcdir/frame_subsampling_factor)"
  fi
  
  # Copy the model as it is required when generating egs
  cp $model $dir/  || exit 1
  
  if [ $stage -le 1 ]; then
    $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode.JOB.log \
      nnet3-latgen-faster$thread_string $ivector_opts $frame_subsampling_opt \
       --frames-per-chunk=$frames_per_chunk \
       --extra-left-context=$extra_left_context \
       --extra-right-context=$extra_right_context \
       --extra-left-context-initial=$extra_left_context_initial \
       --extra-right-context-final=$extra_right_context_final \
       --minimize=$minimize --word-determinize=$word_determinize \
       --max-active=$max_active --min-active=$min_active --beam=$beam \
       --lattice-beam=$lattice_beam --acoustic-scale=$acwt --allow-partial=true \
       --word-symbol-table=$graphdir/words.txt ${extra_opts} "$model" \
       $graphdir/HCLG.fst "$feats" "$lat_wspecifier" || exit 1;
  fi
  
  if [ $stage -le 2 ]; then
    if ! $skip_diagnostics ; then
      [ ! -z $iter ] && iter_opt="--iter $iter"
      steps/diagnostic/analyze_lats.sh --cmd "$cmd" $iter_opt $graphdir $dir
    fi
  fi
  
  
  # The output of this script is the files "lat.*.gz"-- we'll rescore this at
  # different acoustic scales to get the final output.
  if [ $stage -le 3 ]; then
    if ! $skip_scoring ; then
      [ ! -x local/score.sh ] && \
        echo "Not scoring because local/score.sh does not exist or not executable." && exit 1;
      echo "score best paths"
      [ "$iter" != "final" ] && iter_opt="--iter $iter"
      local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir
      echo "score confidence and timing with sclite"
    fi
  fi
  echo "Decoding done."
  exit 0;