Blame view
egs/wsj/s5/steps/nnet3/get_egs_discriminative.sh
19 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#!/bin/bash # Copyright 2012-2016 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # Copyright 2014-2015 Vimal Manohar # Note: you may find it more convenient to use the newer script get_degs.sh, which # combines decoding and example-creation in one step without writing lattices. # This script dumps examples MPE or MMI or state-level minimum bayes risk (sMBR) # training of neural nets. # Criterion supported are mpe, smbr and mmi # Begin configuration section. cmd=run.pl frames_per_eg=150 # number of frames of labels per example. more->less disk space and # less time preparing egs, but more I/O during training. # Note: may in general be a comma-separated string of alternative # durations; the first one (the principal num-frames) is preferred. frames_overlap_per_eg=30 # number of supervised frames of overlap that we aim for per eg. # can be useful to avoid wasted data if you're using --left-deriv-truncate # and --right-deriv-truncate. frame_subsampling_factor=1 # ratio between input and output frame-rate of nnet. # this should be read from the nnet. For now, it is taken as an option left_context=4 # amount of left-context per eg (i.e. extra frames of input features # not present in the output supervision). right_context=4 # amount of right-context per eg. left_context_initial=-1 # if >=0, left-context for first chunk of an utterance right_context_final=-1 # if >=0, right-context for last chunk of an utterance adjust_priors=true compress=true # set this to false to disable compression (e.g. if you want to see whether # results are affected). num_utts_subset=80 # number of utterances in validation and training # subsets used for shrinkage and diagnostics. frames_per_iter=400000 # each iteration of training, see this many frames # per job. This is just a guideline; it will pick a number # that divides the number of samples in the entire data. acwt=0.1 stage=0 max_jobs_run=15 max_shuffle_jobs_run=15 online_ivector_dir= cmvn_opts= # can be used for specifying CMVN options, if feature type is not lda (if lda, # it doesn't make sense to use different options than were used as input to the # LDA transform). This is used to turn off CMVN in the online-nnet experiments. num_priors_subset=1000 # number of utterances used to calibrate the per-state # priors. Note: these don't have to be held out from # the training data. num_archives_priors=10 # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: $0 [opts] <data> <lang> <ali-dir> <denlat-dir> <src-model-file> <degs-dir>" echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet_denlats exp/tri4/final.mdl exp/tri4_mpe/degs" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs (probably would be good to add --max-jobs-run 5 or so if using" echo " # GridEngine (to avoid excessive NFS traffic)." echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per" echo " # process." echo " --stage <stage|-8> # Used to run a partially-completed training process from somewhere in" echo " # the middle." echo " --online-ivector-dir <dir|""> # Directory for online-estimated iVectors, used in the" echo " # online-neural-net setup." echo " --left-context <int;4> # Number of frames on left side to append for feature input" echo " --right-context <int;4> # Number of frames on right side to append for feature input" echo " --left-context-initial <int;-1> # If >= 0, left-context for first chunk of an utterance" echo " --right-context-final <int;-1> # If >= 0, right-context for last chunk of an utterance" exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 src_model=$5 dir=$6 extra_files= [ ! -z $online_ivector_dir ] && \ extra_files="$online_ivector_dir/ivector_period $online_ivector_dir/ivector_online.scp" # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/num_jobs $alidir/tree \ $denlatdir/lat.1.gz $denlatdir/num_jobs $src_model $extra_files; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done mkdir -p $dir/log $dir/info || exit 1; utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; nj=$(cat $denlatdir/num_jobs) || exit 1; sdata=$data/split$nj utils/split_data.sh $data $nj # Get list of validation utterances. awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \ > $dir/valid_uttlist || exit 1; if [ -f $data/utt2uniq ]; then # this matters if you use data augmentation. echo "File $data/utt2uniq exists, so augmenting valid_uttlist to" echo "include all perturbed versions of the same 'real' utterances." mv $dir/valid_uttlist $dir/valid_uttlist.tmp utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt cat $dir/valid_uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \ sort | uniq | utils/apply_map.pl $dir/uniq2utt | \ awk '{for(n=1;n<=NF;n++) print $n;}' | sort > $dir/valid_uttlist rm $dir/uniq2utt $dir/valid_uttlist.tmp fi awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \ utils/shuffle_list.pl | head -$num_utts_subset > $dir/train_subset_uttlist || exit 1; if [ $stage -le 1 ]; then nj_ali=$(cat $alidir/num_jobs) alis=$(for n in $(seq $nj_ali); do echo -n "$alidir/ali.$n.gz "; done) $cmd $dir/log/copy_alignments.log \ copy-int-vector "ark:gunzip -c $alis|" \ ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1; fi prior_ali_rspecifier="ark,s,cs:utils/filter_scp.pl $dir/priors_uttlist $dir/ali.scp | ali-to-pdf $alidir/final.mdl scp:- ark:- |" silphonelist=`cat $lang/phones/silence.csl` || exit 1; cp $alidir/tree $dir cp $lang/phones/silence.csl $dir/info/ cp $src_model $dir/final.mdl || exit 1 # Get list of utterances for prior computation. awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid_uttlist | \ utils/shuffle_list.pl | head -$num_priors_subset \ > $dir/priors_uttlist || exit 1; feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |" valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" priors_feats="ark,s,cs:utils/filter_scp.pl $dir/priors_uttlist $data/feats.scp | apply-cmvn $cmvn_opts --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" echo $cmvn_opts > $dir/cmvn_opts if [ ! -z $online_ivector_dir ]; then ivector_period=$(cat $online_ivector_dir/ivector_period) ivector_dim=$(feat-to-dim scp:$online_ivector_dir/ivector_online.scp -) || exit 1; echo $ivector_dim >$dir/info/ivector_dim steps/nnet2/get_ivector_id.sh $online_ivector_dir > $dir/info/final.ie.id || exit 1 ivector_opts="--online-ivectors=scp:$online_ivector_dir/ivector_online.scp --online-ivector-period=$ivector_period" else ivector_opts="" fi if [ $stage -le 2 ]; then echo "$0: working out number of frames of training data" num_frames=$(steps/nnet2/get_num_frames.sh $data) echo $num_frames > $dir/info/num_frames echo "$0: working out feature dim" feats_one="$(echo $feats | sed s:JOB:1:g)" if feat_dim=$(feat-to-dim "$feats_one" - 2>/dev/null); then echo $feat_dim > $dir/info/feat_dim else # run without stderr redirection to show the error. feat-to-dim "$feats_one" -; exit 1 fi fi # Work out total number of archives. Add one on the assumption the # num-frames won't divide exactly, and we want to round up. num_archives=$[$num_frames/$frames_per_iter+1] # We may have to first create a smaller number of larger archives, with number # $num_archives_intermediate, if $num_archives is more than the maximum number # of open filehandles that the system allows per process (ulimit -n). max_open_filehandles=$(ulimit -n) || exit 1 num_archives_intermediate=$num_archives archives_multiple=1 while [ $[$num_archives_intermediate+4] -gt $max_open_filehandles ]; do archives_multiple=$[$archives_multiple+1] num_archives_intermediate=$[$num_archives/$archives_multiple] || exit 1; done # now make sure num_archives is an exact multiple of archives_multiple. num_archives=$[$archives_multiple*$num_archives_intermediate] || exit 1; echo $num_archives >$dir/info/num_archives echo $frames_per_eg >$dir/info/frames_per_eg # the first field in frames_per_eg (which is a comma-separated list of numbers) # is the 'principal' frames-per-eg, and for purposes of working out the number # of archives we assume that this will be the average number of frames per eg. frames_per_eg_principal=$(echo $frames_per_eg | cut -d, -f1) # Work out the number of egs per archive egs_per_archive=$[$num_frames/($frames_per_eg_principal*$num_archives)] || exit 1; ! [ $egs_per_archive -le $frames_per_iter ] && \ echo "$0: script error: egs_per_archive=$egs_per_archive not <= frames_per_iter=$frames_per_iter" \ && exit 1; echo $egs_per_archive > $dir/info/egs_per_archive echo "$0: creating $num_archives archives, each with $egs_per_archive egs, with" echo "$0: $frames_per_eg labels per example, and (left,right) context = ($left_context,$right_context)" if [ $left_context_initial -ge 0 ] || [ $right_context_final -ge 0 ]; then echo "$0: ... and (left-context-initial,right-context-final) = ($left_context_initial,$right_context_final)" fi if [ -e $dir/storage ]; then # Make soft links to storage directories, if distributing this way.. See # utils/create_split_dir.pl. echo "$0: creating data links" utils/create_data_link.pl $(for x in $(seq $num_archives); do echo $dir/degs.$x.ark; done) for x in $(seq $num_archives_intermediate); do utils/create_data_link.pl $(for y in $(seq $nj); do echo $dir/degs_orig.$y.$x.ark; done) done fi if [ $stage -le 3 ]; then echo "$0: copying training lattices" $cmd --max-jobs-run 6 JOB=1:$nj $dir/log/lattice_copy.JOB.log \ lattice-copy --write-compact=false --include="cat $dir/valid_uttlist $dir/train_subset_uttlist |" --ignore-missing \ "ark:gunzip -c $denlatdir/lat.JOB.gz|" ark,scp:$dir/lat_special.JOB.ark,$dir/lat_special.JOB.scp || exit 1; for id in $(seq $nj); do cat $dir/lat_special.$id.scp; done > $dir/lat_special.scp fi # If frame_subsampling_factor > 0, we will later be shifting the egs slightly to # the left or right as part of training, so we see (e.g.) all shifts of the data # modulo 3... we need to extend the l/r context slightly to account for this, to # ensure we see the entire context that the model requires. left_context=$[left_context+frame_subsampling_factor/2] right_context=$[right_context+frame_subsampling_factor/2] [ $left_context_initial -ge 0 ] && left_context_initial=$[left_context_initial+frame_subsampling_factor/2] [ $right_context_final -ge 0 ] && right_context_final=$[right_context_final+frame_subsampling_factor/2] egs_opts="--left-context=$left_context --right-context=$right_context --num-frames=$frames_per_eg --compress=$compress --frame-subsampling-factor=$frame_subsampling_factor --acoustic-scale=$acwt" [ $left_context_initial -ge 0 ] && egs_opts="$egs_opts --left-context-initial=$left_context_initial" [ $right_context_final -ge 0 ] && egs_opts="$egs_opts --right-context-final=$right_context_final" # don't do the overlap thing for the priors computation data-- but do use the # same num-frames for the eg, which would be much more efficient in case it's a # recurrent model and has a lot of frames of context. In any case we're not # doing SGD so there is no benefit in having short chunks. priors_egs_opts="--left-context=$left_context --right-context=$right_context --num-frames=$frames_per_eg --compress=$compress" [ $left_context_initial -ge 0 ] && priors_egs_opts="$priors_egs_opts --left-context-initial=$left_context_initial" [ $right_context_final -ge 0 ] && priors_egs_opts="$priors_egs_opts --right-context-final=$right_context_final" echo $left_context > $dir/info/left_context echo $right_context > $dir/info/right_context echo $left_context_initial > $dir/info/left_context_initial echo $right_context_final > $dir/info/right_context_final echo $frame_subsampling_factor > $dir/info/frame_subsampling_factor if [ "$frame_subsampling_factor" != 1 ]; then if $adjust_priors; then echo "$0: setting --adjust-priors false since adjusting priors is not supported (and does not make sense) for chain models" adjust_priors=false fi fi ( if $adjust_priors && [ $stage -le 10 ]; then if [ ! -f $dir/ali.scp ]; then nj_ali=$(cat $alidir/num_jobs) alis=$(for n in $(seq $nj_ali); do echo -n "$alidir/ali.$n.gz "; done) $cmd $dir/log/copy_alignments.log \ copy-int-vector "ark:gunzip -c $alis|" \ ark,scp:$dir/ali.ark,$dir/ali.scp || exit 1; fi priors_egs_list= for y in `seq $num_archives_priors`; do utils/create_data_link.pl $dir/priors_egs.$y.ark priors_egs_list="$priors_egs_list ark:$dir/priors_egs.$y.ark" done echo "$0: dumping egs for prior adjustment in the background." num_pdfs=`am-info $alidir/final.mdl | grep pdfs | awk '{print $NF}' 2>/dev/null` || exit 1 $cmd $dir/log/create_priors_subset.log \ nnet3-get-egs --num-pdfs=$num_pdfs $ivector_opts $priors_egs_opts "$priors_feats" \ "$prior_ali_rspecifier ali-to-post ark:- ark:- |" \ ark:- \| nnet3-copy-egs ark:- $priors_egs_list || \ { touch $dir/.error; echo "Error in creating priors subset. See $dir/log/create_priors_subset.log"; exit 1; } sleep 3; echo $num_archives_priors >$dir/info/num_archives_priors else echo 0 > $dir/info/num_archives_priors fi ) & if [ $stage -le 4 ]; then echo "$0: Getting validation and training subset examples." rm $dir/.error 2>/dev/null echo "$0: ... extracting validation and training-subset alignments." #utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) \ # <$dir/lat.scp >$dir/lat_special.scp utils/filter_scp.pl <(cat $dir/valid_uttlist $dir/train_subset_uttlist) \ <$dir/ali.scp >$dir/ali_special.scp $cmd $dir/log/create_valid_subset.log \ nnet3-discriminative-get-egs $ivector_opts $egs_opts \ $dir/final.mdl "$valid_feats" scp:$dir/lat_special.scp \ scp:$dir/ali_special.scp "ark:$dir/valid_diagnostic.degs" || touch $dir/.error & $cmd $dir/log/create_train_subset.log \ nnet3-discriminative-get-egs $ivector_opts $egs_opts \ $dir/final.mdl "$train_subset_feats" scp:$dir/lat_special.scp \ scp:$dir/ali_special.scp "ark:$dir/train_diagnostic.degs" || touch $dir/.error & wait; [ -f $dir/.error ] && echo "Error detected while creating train/valid egs" && exit 1 echo "... Getting subsets of validation examples for diagnostics and combination." for f in $dir/{train_diagnostic,valid_diagnostic}.degs; do [ ! -s $f ] && echo "No examples in file $f" && exit 1; done fi if [ $stage -le 5 ]; then # create degs_orig.*.*.ark; the first index goes to $nj, # the second to $num_archives_intermediate. degs_list= for n in $(seq $num_archives_intermediate); do degs_list="$degs_list ark:$dir/degs_orig.JOB.$n.ark" done echo "$0: Generating training examples on disk" # The examples will go round-robin to degs_list. # To make it efficient we need to use a large 'nj', like 40, and in that case # there can be too many small files to deal with, because the total number of # files is the product of 'nj' by 'num_archives_intermediate', which might be # quite large. $cmd --max-jobs-run $max_jobs_run JOB=1:$nj $dir/log/get_egs.JOB.log \ nnet3-discriminative-get-egs $ivector_opts $egs_opts \ --num-frames-overlap=$frames_overlap_per_eg \ $dir/final.mdl "$feats" "ark,s,cs:gunzip -c $denlatdir/lat.JOB.gz |" \ "scp:utils/filter_scp.pl $sdata/JOB/utt2spk $dir/ali.scp |" ark:- \| \ nnet3-discriminative-copy-egs --random=true --srand=JOB ark:- $degs_list || exit 1; fi if [ $stage -le 6 ]; then echo "$0: recombining and shuffling order of archives on disk" # combine all the "degs_orig.*.JOB.scp" (over the $nj splits of the data) and # shuffle the order, writing to the degs.JOB.ark # the input is a concatenation over the input jobs. degs_list= for n in $(seq $nj); do degs_list="$degs_list $dir/degs_orig.$n.JOB.ark" done if [ $archives_multiple == 1 ]; then # normal case. $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \ nnet3-discriminative-shuffle-egs --srand=JOB "ark:cat $degs_list|" ark:$dir/degs.JOB.ark || exit 1; else # we need to shuffle the 'intermediate archives' and then split into the # final archives. we create soft links to manage this splitting, because # otherwise managing the output names is quite difficult (and we don't want # to submit separate queue jobs for each intermediate archive, because then # the --max-jobs-run option is hard to enforce). output_archives=$(for y in $(seq $archives_multiple); do echo -n "ark:$dir/degs.JOB.$y.ark "; done) for x in $(seq $num_archives_intermediate); do for y in $(seq $archives_multiple); do archive_index=$[($x-1)*$archives_multiple+$y] # degs.intermediate_archive.{1,2,...}.ark will point to degs.archive.ark ln -sf degs.$archive_index.ark $dir/degs.$x.$y.ark || exit 1 done done $cmd --max-jobs-run $max_shuffle_jobs_run --mem 8G JOB=1:$num_archives_intermediate $dir/log/shuffle.JOB.log \ nnet3-discriminative-shuffle-egs --srand=JOB "ark:cat $degs_list|" ark:- \| \ nnet3-discriminative-copy-egs ark:- $output_archives || exit 1; fi fi if [ $stage -le 7 ]; then echo "$0: removing temporary archives" for x in $(seq $nj); do for y in $(seq $num_archives_intermediate); do file=$dir/degs_orig.$x.$y.ark [ -L $file ] && rm $(utils/make_absolute.sh $file) rm $file done done if [ $archives_multiple -gt 1 ]; then # there are some extra soft links that we should delete. for f in $dir/degs.*.*.ark; do rm $f; done fi echo "$0: removing temporary lattices" rm $dir/lat.* echo "$0: removing temporary alignments" rm $dir/ali.{ark,scp} 2>/dev/null fi wait echo "$0: Finished preparing training examples" |