Blame view

egs/wsj/s5/steps/nnet3/multilingual/combine_egs.sh 6.38 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
  #!/bin/bash
  
  # Copyright 2017     Pegah Ghahremani
  #           2017-18  Vimal Manohar
  #           2018     Hossein Hadian
  # Apache 2.0
  
  # This script generates examples for multilingual training of neural network
  # using separate input egs dir per language as input.
  # This scripts produces 3 sets of files --
  # egs.*.scp, egs.output.*.ark, egs.weight.*.ark
  #
  # egs.*.scp are the SCP files of the training examples.
  # egs.weight.*.ark map from the key of the example to the language-specific
  # weight of that example.
  # egs.output.*.ark map from the key of the example to the name of
  # the output-node in the neural net for that specific language, e.g.
  # 'output-2'.
  #
  # Begin configuration section.
  cmd=run.pl
  block_size=256          # This is the number of consecutive egs that we take from
                          # each source, and it only affects the locality of disk
                          # access.
  lang2weight=            # array of weights one per input languge to scale example's output
                          # w.r.t its input language during training.
  stage=0
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  if [ $# -lt 3 ]; then
    cat <<EOF
    This script generates examples for multilingual training of neural network
    using separate input egs dir per language as input.
    See top of the script for details.
  
    Usage: $0 [opts] <num-input-langs,N> <lang1-egs-dir> ...<langN-egs-dir> <multilingual-egs-dir>
     e.g.: $0 [opts] 2 exp/lang1/egs exp/lang2/egs exp/multi/egs
  
    Options:
        --cmd (utils/run.pl|utils/queue.pl <queue opts>)  # how to run jobs.
        --block-size <int|512>      # it is the number of consecutive egs that we take from 
                                    # each source, and it only affects the locality of disk 
                                    # access. This does not have to be the actual minibatch size
  EOF
    exit 1;
  fi
  
  num_langs=$1
  
  shift 1
  args=("$@")
  megs_dir=${args[-1]} # multilingual directory
  mkdir -p $megs_dir
  mkdir -p $megs_dir/info
  if [ ${#args[@]} != $[$num_langs+1] ]; then
    echo "$0: num of input example dirs provided is not compatible with num_langs $num_langs."
    echo "Usage:$0 [opts] <num-input-langs,N> <lang1-egs-dir> ...<langN-egs-dir> <multilingual-egs-dir>"
    echo "Usage:$0 [opts] 2 exp/lang1/egs exp/lang2/egs exp/multi/egs"
    exit 1;
  fi
  
  required="egs.scp combine.scp train_diagnostic.scp valid_diagnostic.scp"
  train_scp_list=
  train_diagnostic_scp_list=
  valid_diagnostic_scp_list=
  combine_scp_list=
  
  # read paramter from $egs_dir[0]/info and cmvn_opts
  # to write in multilingual egs_dir.
  check_params="info/feat_dim info/ivector_dim info/left_context info/right_context info/left_context_initial info/right_context_final cmvn_opts"
  ivec_dim=`cat ${args[0]}/info/ivector_dim`
  if [ $ivec_dim -ne 0 ];then check_params="$check_params info/final.ie.id"; fi
  
  for param in $check_params info/frames_per_eg; do
    cat ${args[0]}/$param > $megs_dir/$param || exit 1;
  done
  
  tot_num_archives=0
  for lang in $(seq 0 $[$num_langs-1]);do
    multi_egs_dir[$lang]=${args[$lang]}
    for f in $required; do
      if [ ! -f ${multi_egs_dir[$lang]}/$f ]; then
        echo "$0: no such file ${multi_egs_dir[$lang]}/$f." && exit 1;
      fi
    done
    num_archives=$(cat ${multi_egs_dir[$lang]}/info/num_archives)
    tot_num_archives=$[tot_num_archives+num_archives]
    train_scp_list="$train_scp_list ${args[$lang]}/egs.scp"
    train_diagnostic_scp_list="$train_diagnostic_scp_list ${args[$lang]}/train_diagnostic.scp"
    valid_diagnostic_scp_list="$valid_diagnostic_scp_list ${args[$lang]}/valid_diagnostic.scp"
    combine_scp_list="$combine_scp_list ${args[$lang]}/combine.scp"
  
    # check parameter dimension to be the same in all egs dirs
    for f in $check_params; do
      if [ -f $megs_dir/$f ] && [ -f ${multi_egs_dir[$lang]}/$f ]; then
        f1=$(cat $megs_dir/$f)
        f2=$(cat ${multi_egs_dir[$lang]}/$f)
        if [ "$f1" != "$f2" ]  ; then
          echo "$0: mismatch for $f in $megs_dir vs. ${multi_egs_dir[$lang]}($f1 vs. $f2)."
          exit 1;
        fi
      else
        echo "$0: file $f does not exits in $megs_dir or ${multi_egs_dir[$lang]}/$f ."
      fi
    done
  done
  
  if [ ! -z "$lang2weight" ]; then
    egs_opt="--lang2weight '$lang2weight'"
  fi
  
  if [ $stage -le 0 ]; then
    echo "$0: allocating multilingual examples for training."
    # Generate egs.*.scp for multilingual setup.
    $cmd $megs_dir/log/allocate_multilingual_examples_train.log \
      steps/nnet3/multilingual/allocate_multilingual_examples.py $egs_opt \
        --num-archives $tot_num_archives \
        --block-size $block_size \
        $train_scp_list $megs_dir || exit 1;
  fi
  
  if [ $stage -le 1 ]; then
    echo "$0: combine combine.scp examples from all langs in $megs_dir/combine.scp."
    # Generate combine.scp for multilingual setup.
    $cmd $megs_dir/log/allocate_multilingual_examples_combine.log \
      steps/nnet3/multilingual/allocate_multilingual_examples.py $egs_opt \
        --num-archives 1 \
        --block-size $block_size \
        --egs-prefix "combine." \
        $combine_scp_list $megs_dir || exit 1;
  
    echo "$0: combine train_diagnostic.scp examples from all langs in $megs_dir/train_diagnostic.scp."
    # Generate train_diagnostic.scp for multilingual setup.
    $cmd $megs_dir/log/allocate_multilingual_examples_train_diagnostic.log \
      steps/nnet3/multilingual/allocate_multilingual_examples.py $egs_opt \
        --num-archives 1 \
        --block-size $block_size \
        --egs-prefix "train_diagnostic." \
        $train_diagnostic_scp_list $megs_dir || exit 1;
  
  
    echo "$0: combine valid_diagnostic.scp examples from all langs in $megs_dir/valid_diagnostic.scp."
    # Generate valid_diagnostic.scp for multilingual setup.
    $cmd $megs_dir/log/allocate_multilingual_examples_valid_diagnostic.log \
      steps/nnet3/multilingual/allocate_multilingual_examples.py $egs_opt \
        --num-archives 1 \
        --block-size $block_size \
        --egs-prefix "valid_diagnostic." \
        $valid_diagnostic_scp_list $megs_dir || exit 1;
  
  fi
  for egs_type in combine train_diagnostic valid_diagnostic; do
    mv $megs_dir/${egs_type}.output.1.ark $megs_dir/${egs_type}.output.ark || exit 1;
    mv $megs_dir/${egs_type}.weight.1.ark $megs_dir/${egs_type}.weight.ark || exit 1;
    mv $megs_dir/${egs_type}.1.scp $megs_dir/${egs_type}.scp || exit 1;
  done
  mv $megs_dir/info/egs.num_archives $megs_dir/info/num_archives || exit 1;
  mv $megs_dir/info/egs.num_tasks $megs_dir/info/num_tasks || exit 1;
  echo "$0: Finished preparing multilingual training example."