Blame view
egs/wsj/s5/steps/nnet3/report/convert_model.py
20.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
#!/usr/bin/env python3 # This script dumps the parameters of (most components of) an nnet3 model as a # pickled python dict. (see documentation for the function 'read_model' below # for more details). # # It also contains some utility function that you can get access by importing this # file. # # In egs/mini_librispeech/s5/local/chain/diagnostic/report_example.py, you can # find an example of the use of this script. # # Copyright 2017-2018 Daniel Povey # Apache 2.0. # This requires python 3. import sys import subprocess import numpy as np import pickle def read_next_token(s, pos): """This function, given a string s (probably a long string, like a line or a file) and a position 'pos', finds the next token in the string (defined as a nonempty sequence of whitespace characters delimited by whitespace), and advances the position to one character after the end of this token. 's' is expected to be of type 'str' and 'pos' of type 'int'. This function returns a tuple (token, new_pos). If we're at the end of the string (there is only whitespace between 'pos' and the end), then 'token' will be None and 'pos' will be len(s). """ assert isinstance(s, str) and isinstance(pos, int) assert pos >= 0 # Skip over any initial whitespace. while pos < len(s) and s[pos].isspace(): pos += 1 if pos >= len(s): # We reached the end of the string s without finding any non-whitespace. return (None, pos) initial_pos = pos while pos < len(s) and not s[pos].isspace(): pos += 1 token = s[initial_pos:pos] return (token, pos) def check_for_newline(s, pos): """This function, given a string s (probably a long string, like a line or a file) and a position 'pos', in the string, eats up all the whitespace it can and records whether a newline was among that whitespace. It returns a tuple (saw_newline, new_pos) where saw_newline will be true if a newline was seen, and new_pos is the new position after eating up whitespace-- so either new_pos == len(s) or s[new_pos] is non-whitespace. """ assert isinstance(s, str) and isinstance(pos, int) assert pos >= 0 saw_newline = False while pos < len(s) and s[pos].isspace(): if s[pos] == " ": saw_newline = True pos += 1 return (saw_newline, pos) def read_float(s, pos): """This function, given a string s (probably a long string, like a line or a file) and a position 'pos', tries to read a text-format floating point or integer, starting from this position, and returns the pair (float, new_position). If something goes wrong it will print a warning to stderr and return (None, pos) """ orig_pos = pos (tok, pos) = read_next_token(s, pos) f = None try: f = float(tok) except: print("{0}: at file position {1}, expected float but got {1}".format( sys.argv[0], orig_pos, tok), file=sys.stderr) return (None, pos) return (f, pos) def read_int(s, pos): """This function, given a string s (probably a long string, like a line or a file) and a position 'pos', tries to read a text-format integer, starting from this position, and returns the pair (int, new_position). If something goes wrong it will print a warning to stderr and return (None, pos) """ orig_pos = pos (tok, pos) = read_next_token(s, pos) i = None try: i = int(tok) except: print("{0}: at file position {1}, expected int but got {1}".format( tok).format(sys.argv[0], orig_pos, tok), file=sys.stderr) return (None, pos) return (i, pos) def read_vector(s, pos): """This function, given a string s (probably a long string, like a line or a file) and a position 'pos', tries to read a text-format vector (something like "[ 1.0 2.0 3.0 ]" starting from this position, reads it as a 1-dimensional numpy array, and returns the pair (vector, new_position). If something goes wrong it will print a warning to stderr and return (None, pos) """ orig_pos = pos (tok, pos) = read_next_token(s, pos) if tok != '[': print("{0}: at file position {1}, expected vector but got {1}".format( tok).format(sys.argv[0], pos, tok), file=sys.stderr) return (None, pos) v = [] while True: (tok, pos) = read_next_token(s, pos) if tok is None or tok == ']': break try: f = float(tok) v.append(f) except: print("{0}: at file position {1}, reading vector, expected float but got {1}". format(sys.argv[0], pos, tok), file=sys.stderr) return (None, pos) if tok is None: print("{0}: encountered EOF while reading vector.".format( tok).format(sys.argv[0]), file=sys.stderr) return (None, pos) return (np.array(v, dtype=np.float32), pos) def read_matrix(s, pos): """This function, given a string s (probably a long string, like a line or a file) and a position 'pos', tries to read a text-format matrix (something like "[ 1.0 2.0 3.0 4.0 ]") starting from this position, reads it as a 2-dimensional numpy array, and returns pair (matrix, new_position). If something goes wrong it will print a warning to stderr and return (None, pos) """ orig_pos = pos (tok, pos) = read_next_token(s, pos) if tok != '[': print("{0}: at file position {1}, expected matrix but got {1}".format( tok).format(sys.argv[0], pos, tok), file=sys.stderr) return (None, pos) # m will be an array of arrays (python arrays, not numpy arrays). m = [] while True: # At this point, assume we're ready to read a new vector # (terminated by newline or by "]"). v = [] while True: (tok, pos) = read_next_token(s, pos) if tok == ']' or tok == None: break else: try: f = float(tok) v.append(f) except: print("{0}: at file position {1}, reading matrix, expected float but got {2}".format( sys.argv[0], pos, tok), file=sys.stderr) return (None, pos) (saw_newline, pos) = check_for_newline(s, pos) if saw_newline: # Newline terminates each row of the matrix. break if len(v) > 0: m.append(v) if tok == 'None': print("{0}: matrix starting at position {1} was unexpectedly terminated by EOF.".format( sys.argv[0], pos), file=sys.stderr) break if tok == ']': break ans_mat = None try: ans_mat = np.array(m, dtype=np.float32) except: if tok is None: print("{0}: error converting matrix starting at position {1} into numpy array.".format( sys.argv[0], orig_pos), file=sys.stderr) return (ans_mat, pos) def is_component_type(component_type): """Returns True if 'component_type' is a plausible component type, e.g. something of the form "<xxxComponent>", otherwise False""" return (isinstance(component_type, str) and len(component_type) >= 13 and component_type[0] == "<" and component_type[-10:] == "Component>") def read_generic(s, pos, terminating_token, action_dict): """This function is a generic mechanism for parsing things from text files (after reading the text file into a string). It will return a pair (d, new_pos) where new_pos is the position in the string after reading the object, and d is a dict representing what we read in. 'terminating_token' is either a token (a whitespace-delimited string) that terminates the object (something like "</RectifiedLinearComponent>"), or a set containing possible terminating tokens. 'action_dict' is a dict from token to a pair (function, dict_key) where 'function' is the function we should use to read in data, and 'dict_key' is the key in the returned dictionary that we should use to store the result. For instance, we might have: action_dict['<ParameterMatrix>'] = (read_matrix, 'params') It is OK if not everything in the object is covered in 'action_dict'. This function will simply skip over anything that it doesn't understand. """ if isinstance(terminating_token, str): terminating_tokens = set([terminating_token]) else: terminating_tokens = terminating_token assert isinstance(terminating_tokens, set) assert isinstance(action_dict, dict) # d will contain the fields of the object. d = dict() orig_pos = pos while True: (tok, pos) = read_next_token(s, pos) if tok in terminating_tokens: break if tok is None: print("{0}: error reading object starting at position {1}, got EOF " "while expecting one of: {2}".format( sys.argv[0], orig_pos, terminating_tokens), file=sys.stderr) break if tok in action_dict: p = action_dict[tok] assert isinstance(p, tuple) and len(p) == 2 assert callable(p[0]) and isinstance(p[1], str) (func, name) = p (obj, pos) = func(s, pos) d[name] = obj return (d, pos) def get_action_dict(component_type): """Given a component-type (i.e. a string, like <SigmoidComponent>, returns an 'action_dict' suitable for reading that component type (specifically, one that can be given as the 'action_dict' argumnt of 'read_generic'). To repeat the documentation there: 'action_dict' is a dict from token to a pair (function, dict_key) where 'function' is the function we should use to read in data, and 'dict_key' is the key in the returned dictionary that we should use to store the result. For instance, we might have: action_dict['<ParameterMatrix>'] = (read_matrix, 'params') """ assert is_component_type(component_type) # e.g. if component_type is '<SigmoidComponent>', raw_component_type would be # 'Sigmoid' raw_component_type = component_type[1:-10] if raw_component_type in { 'Sigmoid', 'Tanh', 'RectifiedLinear', 'Softmax', 'LogSoftmax', 'NoOp' }: return { '<Dim>': (read_int, 'dim'), '<BlockDim>': (read_int, 'block-dim'), '<ValueAvg>': (read_vector, 'value-avg'), '<DerivAvg>': (read_vector, 'deriv-avg'), '<OderivRms>': (read_vector, 'oderiv-rms'), '<Count>': (read_float, 'count'), '<OderivCount>': (read_float, 'oderiv-count') } if raw_component_type in {'Affine', 'NaturalGradientAffine'}: # We call '<LinearParams>' to just 'params' for compatibility with # LinearComponent. return { '<LinearParams>': (read_matrix, 'params'), '<BiasParams>': (read_vector, 'bias') } if raw_component_type == 'Linear': return { '<Params>': (read_matrix, 'params') } if raw_component_type == 'BatchNorm': return { '<Dim>': (read_int, 'dim'), '<Count>': (read_float, 'count'), '<StatsMean>': (read_vector, 'stats-mean'), '<StatsVar>': (read_vector, 'stats-var') } # By default (if we don't know anything about the component type) we just # don't read anything. return { } def get_stdout_from_command(command): """ Executes a command and returns its stdout output as a string. The command is executed with shell=True, so it may contain pipes and other shell constructs. Raises an exception if the command exits with nonzero status. """ p = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) stdout = p.communicate()[0] if p.returncode is not 0: raise Exception("Command exited with status {0}: {1}".format( p.returncode, command)) return stdout.decode() def read_component(s, pos): """Reads a component starting at position 'pos' in the string 's'. At this position, there is expected to be a component type, e.g. <RectifiedLinearComponent>, and this funtion will read until after the end-marker, e.g. </RectifiedLinearComponent>, or if this fails for some reason, until the next instance of <ComponentName>. This funtion returns the pair (d, new_pos) where d is a dict from element-name to object (e.g. d['params'] might contain a matrix), and new_pos is the position in the string after reading this component in. Returns (None, new_pos) if something went wrong. """ (component_type, pos) = read_next_token(s, pos) if not is_component_type(component_type): print("{0}: error reading Component: at position {1}, expected <xxxxComponent>," " got: {2}".format(sys.argv[0], pos, component_type), file=sys.stderr) while True: (tok, pos) = read_next_token(s, pos) if tok is None or tok == '<ComponentName>': return (None, pos) terminating_token = "</" + component_type[1:] terminating_tokens = { terminating_token, '<ComponentName>' } action_dict = get_action_dict(component_type) (d, pos) = read_generic(s, pos, terminating_tokens, action_dict) if d is not None: d['type'] = component_type # e.g. '<LinearComponent>' d['raw-type'] = component_type[1:-10] # e.g. 'Linear' return (d, pos) def read_model(filename): """Reads an nnet3 model from the provided filename, and returns a dict from the component-name to a dict containing things we have read in for that component.""" command = "nnet3-copy --binary=false {0} -".format(filename) s = get_stdout_from_command(command) # The model starts with some structural stuff (component-nodes, etc.) that we # won't be attempting to parse. We start parsing when we reach # <NumComponents>. pos = 0 while True: (tok, pos) = read_next_token(s, pos) if tok is None: print("{0}: unexpected EOF on output of command {1}".format( sys.argv[0], command)) return None if tok == "<NumComponents>": break # we just read <NumComponents> (tok, pos) = read_next_token(s, pos) # 'd', which we return, will be a dict from component-name # (e.g. 'tdnn1.affine'), to a dict containing elements of the component. d = dict() num_components = int(tok) # shouldn't fail. for c in range(num_components): # read the components one by one... (tok, pos) = read_next_token(s, pos) if tok is None: print("{0}: unexpected EOF on output of command {1}".format( sys.argv[0], command)) return None # We normally expect that tok will be '<ComponentName>', but if we read in # '<ComponentName>' while parsing the previous component (e.g. if its text form was # not terminated in the way we expected), then we accept that '<ComponentName>' # might not be available to parse. if tok == '<ComponentName>': component_pos = pos (component_name, pos) = read_next_token(s, pos) # At this point the type of the component will be printed: something like # <NaturalGradientAffineComponent>. We let 'read_component' take it from # here, and it will read until the terminating </NaturalGradientAffineComponent>, # or, in the case of error, to EOF or the next <ComponentName> string. (component, pos) = read_component(s, pos) if component != None: d[component_name] = component else: print("{0}: error reading component with name {1} at position {2}".format( sys.argv[0], component_name, component_pos), file=sys.stderr) return d def compute_derived_quantities(model): """This function, given a model as returned by 'read_model', computes certain potentially-useful derived quantities inside components: things like row and column norms of parameter matrices, standard deviations of accumulated stats. """ assert isinstance(model, dict) for c in model.values(): # 'c' represents the component; it's a dict. raw_component_type = c['raw-type'] if raw_component_type in {'Linear', 'Affine', 'NaturalGradientAffine'}: params = c['params'] # this is the parameter matrix. # compute the row and column norms of the parameter matrix. c['row-norms'] = np.sqrt(np.sum(params * params, axis=1)) c['col-norms'] = np.sqrt(np.sum(params * params, axis=0)) size = c['col-norms'].size if size % 3 == 0: # if the input-dim of this layer is divisible by 3, then compute the # column-norms after reshaping... this is a kind of pooled column-norm # that makes sense for TDNNs or wherever we have used Append(). c['col-norms-3'] = np.sqrt(np.sum(np.power(c['col-norms'], 2).reshape(3, size/3), axis=0)) assert c['col-norms-3'].shape == (size/3,) if raw_component_type == 'BatchNorm': stats_var = c['stats-var'] c['stats-stddev'] = np.sqrt(stats_var) def compute_progress(model1, model2): """This function, given two models assumed to come from two successive iterations of training, computes certain component-level quantities that relate to the rate of change of parameters, and stores them in 'model1'. """ for component_name in model1: if not (component_name in model1 and component_name in model2): continue c1 = model1[component_name] c2 = model2[component_name] raw_component_type = c1['raw-type'] if raw_component_type in {'Linear', 'Affine', 'NaturalGradientAffine'}: params1 = c1['params'] params2 = c2['params'] if params1.size != params2.size: continue # can't compare them if sizes differ. params_diff = params1 - params2 c1['row-change'] = np.sqrt(np.sum(params_diff * params_diff, axis=1)) c1['col-change'] = np.sqrt(np.sum(params_diff * params_diff, axis=0)) # compute relative change in rows and columns. epsilon = 1.0e-20 if 'row-norms' in c1: c1['rel-row-change'] = c1['row-change'] / (c1['row-norms'] + epsilon) if 'col-norms' in c1: c1['rel-col-change'] = c1['col-change'] / (c1['col-norms'] + epsilon) size = c1['col-norms'].size if size % 3 == 0: # if the input-dim of this layer is divisible by 3, then average the # column changes over 3 blocks... this makes sense for TDNNs or # wherever we have used Append(). c1['col-change-3'] = np.sum(c1['col-change'].reshape(3, size/3), axis=0) c1['rel-col-change-3'] = c1['col-change-3'] / (c1['col-norms-3'] + epsilon) def test(): assert sys.version_info.major >= 3 assert read_next_token("", 0) == (None, 0) assert read_next_token("hello", 0) == ("hello", 5) assert read_next_token("hello there", 0) == ("hello", 5) assert read_next_token("hello there", 5) == ("there", 11) assert read_next_token("hello there", 6) == ("there", 11) (a, pos) = read_vector(" [ 1 2 3 ] ", 0) assert pos == 10 and np.array_equal(np.array([1,2,3], dtype=np.float32), a) assert check_for_newline("hello ", 4) == (False, 4) assert check_for_newline("hello ", 5) == (False, 6) assert check_for_newline("hello ", 5) == (True, 7) assert check_for_newline("hello there", 5) == (True, 7) (m, pos) = read_matrix(" [ 1 2 3 4 5 6 ] ", 0) assert pos == 18 and np.array_equal(np.array([[1,2,3],[4,5,6]], dtype=np.float32), m) s = " <ignore_this> 1 <some_vec> [ 1 2 3 ] <end>" (obj, pos) = read_generic(s, 0, "<end>", { '<some_vec>': (read_vector, 'some_vec') }) assert pos == len(s) assert np.array_equal(obj['some_vec'], np.array([1, 2, 3], dtype=np.float32)) m = read_model('exp/chain_cleaned/tdnn1c_sp_bi/final.mdl') compute_derived_quantities(m) print("model is: {0}".format(m)) print("tested") if __name__ == '__main__': if len(sys.argv) == 1: test() if len(sys.argv) != 3: print("Usage: {0} <nnet3-model-in> <pickled-model-out>".format( sys.argv[0]), file=sys.stderr) sys.exit(1) m = read_model(sys.argv[1]) if m != None: try: f = open(sys.argv[2], "wb") pickle.dump(m, f) except: print("{0}: error writing to {1}".format( sys.argv[2]), file=sys.stderr) |