Blame view
egs/wsj/s5/steps/online/nnet2/extract_ivectors.sh
12.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
#!/bin/bash # Copyright 2013 Daniel Povey # Apache 2.0. # This script computes iVectors in the same format as extract_ivectors_online.sh, # except that they are actually not really computed online, they are first computed # per speaker and just duplicated many times. # This is mainly intended for use in decoding, where you want the best possible # quality of iVectors. # # This setup also makes it possible to use a previous decoding or alignment, to # down-weight silence in the stats (default is --silence-weight 0.0). # # This is for when you use the "online-decoding" setup in an offline task, and # you want the best possible results. # Begin configuration section. nj=30 cmd="run.pl" stage=0 num_gselect=5 # Gaussian-selection using diagonal model: number of Gaussians to select min_post=0.025 # Minimum posterior to use (posteriors below this are pruned out) ivector_period=10 posterior_scale=0.1 # Scale on the acoustic posteriors, intended to account for # inter-frame correlations. Making this small during iVector # extraction is equivalent to scaling up the prior, and will # will tend to produce smaller iVectors where data-counts are # small. It's not so important that this match the value # used when training the iVector extractor, but more important # that this match the value used when you do real online decoding # with the neural nets trained with these iVectors. max_count=100 # Interpret this as a number of frames times posterior scale... # this config ensures that once the count exceeds this (i.e. # 1000 frames, or 10 seconds, by default), we start to scale # down the stats, accentuating the prior term. This seems quite # important for some reason. sub_speaker_frames=0 # If >0, during iVector estimation we split each speaker # into possibly many 'sub-speakers', each with at least # this many frames of speech (evaluated after applying # silence_weight, so will typically exclude silence. # e.g. set this to 1000, and it will require at least 10 seconds # of speech per sub-speaker. compress=true # If true, compress the iVectors stored on disk (it's lossy # compression, as used for feature matrices). silence_weight=0.0 acwt=0.1 # used if input is a decode dir, to get best path from lattices. mdl=final # change this if decode directory did not have ../final.mdl present. num_threads=1 # Number of threads used by ivector-extract. It is usually not # helpful to set this to > 1. It is only useful if you have # fewer speakers than the number of jobs you want to run. # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 4 ] && [ $# != 5 ]; then echo "Usage: $0 [options] <data> <lang> <extractor-dir> [<alignment-dir>|<decode-dir>|<weights-archive>] <ivector-dir>" echo " e.g.: $0 data/test data/lang exp/nnet2_online/extractor exp/tri3/decode_test exp/nnet2_online/ivectors_test" echo "If <alignment-dir|decode-dir> is provided, it is converted to frame-weights " echo "giving silence frames a weight of --silence-weight (default: 0.0). " echo "If <weights-archive> is provided, it must be a single archive file compressed " echo "(using gunzip) containing per-frame weights for each utterance." echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --nj <n|10> # Number of jobs (also see num-threads)" echo " --num-threads <n|1> # Number of threads for each job" echo " # Ignored if <alignment-dir> or <decode-dir> supplied." echo " --stage <stage|0> # To control partial reruns" echo " --num-gselect <n|5> # Number of Gaussians to select using" echo " # diagonal model." echo " --min-post <float;default=0.025> # Pruning threshold for posteriors" echo " --ivector-period <int;default=10> # How often to extract an iVector (frames)" echo " --posterior-scale <float;default=0.1> # Scale on posteriors in iVector extraction; " echo " # affects strength of prior term." exit 1; fi if [ $# -eq 4 ]; then data=$1 lang=$2 srcdir=$3 dir=$4 else # 5 arguments data=$1 lang=$2 srcdir=$3 ali_or_decode_dir_or_weights=$4 dir=$5 fi for f in $data/feats.scp $srcdir/final.ie $srcdir/final.dubm $srcdir/global_cmvn.stats $srcdir/splice_opts \ $lang/phones.txt $srcdir/online_cmvn.conf $srcdir/final.mat; do [ ! -f $f ] && echo "$0: No such file $f" && exit 1; done mkdir -p $dir/log silphonelist=$(cat $lang/phones/silence.csl) || exit 1; if [ ! -z "$ali_or_decode_dir_or_weights" ]; then if [ -f $ali_or_decode_dir_or_weights/ali.1.gz ]; then if [ ! -f $ali_or_decode_dir_or_weights/${mdl}.mdl ]; then echo "$0: expected $ali_or_decode_dir_or_weights/${mdl}.mdl to exist." exit 1; fi nj_orig=$(cat $ali_or_decode_dir_or_weights/num_jobs) || exit 1; if [ $stage -le 0 ]; then rm $dir/weights.*.gz 2>/dev/null $cmd JOB=1:$nj_orig $dir/log/ali_to_post.JOB.log \ gunzip -c $ali_or_decode_dir_or_weights/ali.JOB.gz \| \ ali-to-post ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $ali_or_decode_dir_or_weights/final.mdl ark:- ark:- \| \ post-to-weights ark:- "ark:|gzip -c >$dir/weights.JOB.gz" || exit 1; # put all the weights in one archive. for j in $(seq $nj_orig); do gunzip -c $dir/weights.$j.gz; done | gzip -c >$dir/weights.gz || exit 1; rm $dir/weights.*.gz || exit 1; fi elif [ -f $ali_or_decode_dir_or_weights/lat.1.gz ]; then nj_orig=$(cat $ali_or_decode_dir_or_weights/num_jobs) || exit 1; if [ ! -f $ali_or_decode_dir_or_weights/../${mdl}.mdl ]; then echo "$0: expected $ali_or_decode_dir_or_weights/../${mdl}.mdl to exist." exit 1; fi if [ $stage -le 0 ]; then rm $dir/weights.*.gz 2>/dev/null $cmd JOB=1:$nj_orig $dir/log/lat_to_post.JOB.log \ lattice-best-path --acoustic-scale=$acwt "ark:gunzip -c $ali_or_decode_dir_or_weights/lat.JOB.gz|" ark:/dev/null ark:- \| \ ali-to-post ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $ali_or_decode_dir_or_weights/../${mdl}.mdl ark:- ark:- \| \ post-to-weights ark:- "ark:|gzip -c >$dir/weights.JOB.gz" || exit 1; # put all the weights in one archive. for j in $(seq $nj_orig); do gunzip -c $dir/weights.$j.gz; done | gzip -c >$dir/weights.gz || exit 1; rm $dir/weights.*.gz || exit 1; fi elif [ -f $ali_or_decode_dir_or_weights ] && gunzip -c $ali_or_decode_dir_or_weights >/dev/null; then cp $ali_or_decode_dir_or_weights $dir/weights.gz || exit 1; else echo "$0: expected ali.1.gz or lat.1.gz to exist in $ali_or_decode_dir_or_weights"; exit 1; fi fi sdata=$data/split$nj; utils/split_data.sh $data $nj || exit 1; echo $ivector_period > $dir/ivector_period || exit 1; splice_opts=$(cat $srcdir/splice_opts) gmm_feats="ark,s,cs:apply-cmvn-online --spk2utt=ark:$sdata/JOB/spk2utt --config=$srcdir/online_cmvn.conf $srcdir/global_cmvn.stats scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" feats="ark,s,cs:splice-feats $splice_opts scp:$sdata/JOB/feats.scp ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" if [ $sub_speaker_frames -gt 0 ]; then if [ $stage -le 1 ]; then # We work out 'fake' spk2utt files that possibly split each speaker into multiple pieces. if [ ! -z "$ali_or_decode_dir_or_weights" ]; then gunzip -c $dir/weights.gz | copy-vector ark:- ark,t:- | \ awk '{ sum=0; for (n=3;n<NF;n++) sum += $n; print $1, sum; }' > $dir/utt_counts || exit 1; else feat-to-len scp:$data/feats.scp ark,t:- > $dir/utt_counts || exit 1; fi if ! [ $(wc -l <$dir/utt_counts) -eq $(wc -l <$data/feats.scp) ]; then echo "$0: error getting per-utterance counts." exit 0; fi cat $data/spk2utt | python -c " import sys utt_counts = {} trash = list(map(lambda x: utt_counts.update({x.split()[0]:float(x.split()[1])}), open('$dir/utt_counts').readlines())) sub_speaker_frames = $sub_speaker_frames lines = sys.stdin.readlines() total_counts = {} for line in lines: parts = line.split() spk = parts[0] total_counts[spk] = 0 for utt in parts[1:]: total_counts[spk] += utt_counts[utt] for line_index in range(len(lines)): line = lines[line_index] parts = line.split() spk = parts[0] numeric_id=0 current_count = 0 covered_count = 0 current_utts = [] for utt in parts[1:]: try: current_count += utt_counts[utt] covered_count += utt_counts[utt] except KeyError: raise Exception('No count found for the utterance {0}.'.format(utt)) current_utts.append(utt) if ((current_count >= $sub_speaker_frames) and ((total_counts[spk] - covered_count) >= $sub_speaker_frames)) or (utt == parts[-1]): spk_partial = '{0}-{1:06x}'.format(spk, numeric_id) numeric_id += 1 print ('{0} {1}'.format(spk_partial, ' '.join(current_utts))) current_utts = [] current_count = 0 "> $dir/spk2utt || exit 1; mkdir -p $dir/split$nj # create split versions of our spk2utt file. for j in $(seq $nj); do mkdir -p $dir/split$nj/$j utils/filter_scp.pl -f 2 $sdata/$j/utt2spk <$dir/spk2utt >$dir/split$nj/$j/spk2utt || exit 1; utils/spk2utt_to_utt2spk.pl <$dir/split$nj/$j/spk2utt >$dir/split$nj/$j/utt2spk || exit 1; done fi this_sdata=$dir/split$nj else this_sdata=$sdata fi if [ $stage -le 2 ]; then if [ ! -z "$ali_or_decode_dir_or_weights" ]; then $cmd --num-threads $num_threads JOB=1:$nj $dir/log/extract_ivectors.JOB.log \ gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \ weight-post ark:- "ark,s,cs:gunzip -c $dir/weights.gz|" ark:- \| \ ivector-extract --num-threads=$num_threads --acoustic-weight=$posterior_scale --compute-objf-change=true \ --max-count=$max_count --spk2utt=ark:$this_sdata/JOB/spk2utt \ $srcdir/final.ie "$feats" ark,s,cs:- ark,t:$dir/ivectors_spk.JOB.ark || exit 1; else $cmd --num-threads $num_threads JOB=1:$nj $dir/log/extract_ivectors.JOB.log \ gmm-global-get-post --n=$num_gselect --min-post=$min_post $srcdir/final.dubm "$gmm_feats" ark:- \| \ ivector-extract --num-threads=$num_threads --acoustic-weight=$posterior_scale --compute-objf-change=true \ --max-count=$max_count --spk2utt=ark:$this_sdata/JOB/spk2utt \ $srcdir/final.ie "$feats" ark,s,cs:- ark,t:$dir/ivectors_spk.JOB.ark || exit 1; fi fi # get an utterance-level set of iVectors (just duplicate the speaker-level ones). # note: if $this_sdata is set $dir/split$nj, then these won't be real speakers, they'll # be "sub-speakers" (speakers split up into multiple utterances). if [ $stage -le 3 ]; then for j in $(seq $nj); do utils/apply_map.pl -f 2 $dir/ivectors_spk.$j.ark <$this_sdata/$j/utt2spk >$dir/ivectors_utt.$j.ark || exit 1; done fi ivector_dim=$[$(head -n 1 $dir/ivectors_spk.1.ark | wc -w) - 3] || exit 1; echo "$0: iVector dim is $ivector_dim" base_feat_dim=$(feat-to-dim scp:$data/feats.scp -) || exit 1; start_dim=$base_feat_dim end_dim=$[$base_feat_dim+$ivector_dim-1] absdir=$(utils/make_absolute.sh $dir) if [ $stage -le 4 ]; then # here, we are just using the original features in $sdata/JOB/feats.scp for # their number of rows; we use the select-feats command to remove those # features and retain only the iVector features. $cmd JOB=1:$nj $dir/log/duplicate_feats.JOB.log \ append-vector-to-feats scp:$sdata/JOB/feats.scp ark:$dir/ivectors_utt.JOB.ark ark:- \| \ select-feats "$start_dim-$end_dim" ark:- ark:- \| \ subsample-feats --n=$ivector_period ark:- ark:- \| \ copy-feats --compress=$compress ark:- \ ark,scp:$absdir/ivector_online.JOB.ark,$absdir/ivector_online.JOB.scp || exit 1; fi if [ $stage -le 5 ]; then echo "$0: combining iVectors across jobs" for j in $(seq $nj); do cat $dir/ivector_online.$j.scp; done >$dir/ivector_online.scp || exit 1; fi steps/nnet2/get_ivector_id.sh $srcdir > $dir/final.ie.id || exit 1 echo "$0: done extracting (pseudo-online) iVectors to $dir using the extractor in $srcdir." |