Blame view

egs/wsj/s5/steps/online/nnet2/get_egs.sh 14.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
  #!/bin/bash
  
  # Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  
  # This is modified from ../../nnet2/get_egs.sh.
  # This script combines the
  # nnet-example extraction with the feature extraction directly from wave files;
  # it uses the program online2-wav-dump-feature to do all parts of feature
  # extraction: MFCC/PLP/fbank, possibly plus pitch, plus iVectors.  This script
  # is intended mostly for cross-system training for online decoding, where you
  # initialize the nnet from an existing, larger system.
  
  
  # Begin configuration section.
  cmd=run.pl
  num_utts_subset=300    # number of utterances in validation and training
                         # subsets used for shrinkage and diagnostics
  num_valid_frames_combine=0 # #valid frames for combination weights at the very end.
  num_train_frames_combine=10000 # # train frames for the above.
  num_frames_diagnostic=4000 # number of frames for "compute_prob" jobs
  samples_per_iter=400000 # each iteration of training, see this many samples
                          # per job.  This is just a guideline; it will pick a number
                          # that divides the number of samples in the entire data.
  transform_dir=     # If supplied, overrides alidir
  num_jobs_nnet=16    # Number of neural net jobs to run in parallel
  stage=0
  io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.
  random_copy=false
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  
  if [ $# != 4 ]; then
    echo "Usage: steps/online/nnet2/get_egs.sh [opts] <data> <ali-dir> <online-nnet-dir> <exp-dir>"
    echo " e.g.: steps/online/nnet2/get_egs.sh data/train exp/tri3_ali exp/nnet2_online/nnet_a_gpu_online/ exp/tri4_nnet"
    echo "In <online-nnet-dir>, it looks for final.mdl (need to compute required left and right context),"
    echo "and a configuration file conf/online_nnet2_decoding.conf which describes the features."
    echo "Main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config file containing options"
    echo "  --cmd (utils/run.pl;utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --num-jobs-nnet <num-jobs;16>                    # Number of parallel jobs to use for main neural net"
    echo "                                                   # training (will affect results as well as speed; try 8, 16)"
    echo "                                                   # Note: if you increase this, you may want to also increase"
    echo "                                                   # the learning rate."
    echo "  --samples-per-iter <#samples;400000>             # Number of samples of data to process per iteration, per"
    echo "                                                   # process."
    echo "  --feat-type <lda|raw>                            # (by default it tries to guess).  The feature type you want"
    echo "                                                   # to use as input to the neural net."
    echo "  --splice-width <width;4>                         # Number of frames on each side to append for feature input"
    echo "                                                   # (note: we splice processed, typically 40-dimensional frames"
    echo "  --num-frames-diagnostic <#frames;4000>           # Number of frames used in computing (train,valid) diagnostics"
    echo "  --num-valid-frames-combine <#frames;10000>       # Number of frames used in getting combination weights at the"
    echo "                                                   # very end."
    echo "  --stage <stage|0>                                # Used to run a partially-completed training process from somewhere in"
    echo "                                                   # the middle."
  
    exit 1;
  fi
  
  data=$1
  alidir=$2
  online_nnet_dir=$3
  dir=$4
  
  
  mdl=$online_nnet_dir/final.mdl # only needed for left and right context.
  feature_conf=$online_nnet_dir/conf/online_nnet2_decoding.conf
  
  for f in $data/wav.scp $alidir/ali.1.gz $alidir/final.mdl $alidir/tree $feature_conf $mdl; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  nj=`cat $alidir/num_jobs` || exit 1;  # number of jobs in alignment dir...
  
  sdata=$data/split$nj
  utils/split_data.sh $data $nj
  
  mkdir -p $dir/log
  cp $alidir/tree $dir
  grep -v '^--endpoint' $feature_conf >$dir/feature.conf || exit 1;
  
  # Get list of validation utterances.
  mkdir -p $dir/valid $dir/train_subset
  
  awk '{print $1}' $data/utt2spk | utils/shuffle_list.pl | head -$num_utts_subset \
      > $dir/valid/uttlist || exit 1;
  
  if [ -f $data/utt2uniq ]; then
    echo "File $data/utt2uniq exists, so augmenting valid/uttlist to"
    echo "include all perturbed versions of the same 'real' utterances."
    mv $dir/valid/uttlist $dir/valid/uttlist.tmp
    utils/utt2spk_to_spk2utt.pl $data/utt2uniq > $dir/uniq2utt
    cat $dir/valid/uttlist.tmp | utils/apply_map.pl $data/utt2uniq | \
      sort | uniq | utils/apply_map.pl $dir/uniq2utt | \
      awk '{for(n=1;n<=NF;n++) print $n;}' | sort  > $dir/valid/uttlist
    rm $dir/uniq2utt $dir/valid/uttlist.tmp
  fi
  
  awk '{print $1}' $data/utt2spk | utils/filter_scp.pl --exclude $dir/valid/uttlist | \
     utils/shuffle_list.pl | head -$num_utts_subset > $dir/train_subset/uttlist || exit 1;
  
  
  for subdir in valid train_subset; do
    # In order for the iVector extraction to work right, we need to process all
    # utterances of the speakers which have utterances in valid/uttlist, and the
    # same for train_subset/uttlist.  We produce $dir/valid/uttlist_extended which
    # will contain all utterances of all speakers which have utterances in
    # $dir/valid/uttlist, and the same for $dir/train_subset/.
  
    utils/filter_scp.pl $dir/$subdir/uttlist <$data/utt2spk | awk '{print $2}' > $dir/$subdir/spklist || exit 1;
    utils/filter_scp.pl -f 2 $dir/$subdir/spklist <$data/utt2spk >$dir/$subdir/utt2spk || exit 1;
    utils/utt2spk_to_spk2utt.pl <$dir/$subdir/utt2spk >$dir/$subdir/spk2utt || exit 1;
    awk '{print $1}' <$dir/$subdir/utt2spk >$dir/$subdir/uttlist_extended || exit 1;
    rm $dir/$subdir/spklist
  done
  
  if [ -f $data/segments ]; then
    # note: in the feature extraction, because the program online2-wav-dump-features is sensitive to the
    # previous utterances within a speaker, we do the filtering after extracting the features.
    echo "$0 [info]: segments file exists: using that."
    feats="ark,s,cs:extract-segments scp:$sdata/JOB/wav.scp $sdata/JOB/segments ark:- | online2-wav-dump-features --config=$dir/feature.conf ark:$sdata/JOB/spk2utt ark,s,cs:- ark:- | subset-feats --exclude=$dir/valid/uttlist ark:- ark:- |"
    valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid/uttlist_extended $data/segments  | extract-segments scp:$data/wav.scp - ark:- | online2-wav-dump-features --config=$dir/feature.conf ark:$dir/valid/spk2utt ark,s,cs:- ark:- | subset-feats --include=$dir/valid/uttlist ark:- ark:- |"
    train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset/uttlist_extended $data/segments  | extract-segments scp:$data/wav.scp - ark:- | online2-wav-dump-features --config=$dir/feature.conf ark:$dir/train_subset/spk2utt ark,s,cs:- ark:- | subset-feats --include=$dir/train_subset/uttlist ark:- ark:- |"
  else
    echo "$0 [info]: no segments file exists, using wav.scp."
    feats="ark,s,cs:online2-wav-dump-features --config=$dir/feature.conf ark:$sdata/JOB/spk2utt scp:$sdata/JOB/wav.scp ark:- | subset-feats --exclude=$dir/valid/uttlist ark:- ark:- |"
    valid_feats="ark,s,cs:utils/filter_scp.pl $dir/valid/uttlist_extended $data/wav.scp | online2-wav-dump-features --config=$dir/feature.conf ark:$dir/valid/spk2utt scp:- ark:- | subset-feats --include=$dir/valid/uttlist ark:- ark:- |"
    train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset/uttlist_extended $data/wav.scp | online2-wav-dump-features --config=$dir/feature.conf ark:$dir/train_subset/spk2utt scp:- ark:- | subset-feats --include=$dir/train_subset/uttlist ark:- ark:- |"
  fi
  
  ivector_dim=$(online2-wav-dump-features --config=$dir/feature.conf --print-ivector-dim=true) || exit 1;
  
  ! [ $ivector_dim -ge 0 ] && echo "$0: error getting iVector dim" && exit 1;
  
  
  if [ $stage -le 0 ]; then
    echo "$0: working out number of frames of training data"
    num_frames=$(steps/nnet2/get_num_frames.sh $data)
    echo $num_frames > $dir/num_frames
  else
    num_frames=`cat $dir/num_frames` || exit 1;
  fi
  
  # Working out number of iterations per epoch.
  iters_per_epoch=`perl -e "print int($num_frames/($samples_per_iter * $num_jobs_nnet) + 0.5);"` || exit 1;
  [ $iters_per_epoch -eq 0 ] && iters_per_epoch=1
  samples_per_iter_real=$[$num_frames/($num_jobs_nnet*$iters_per_epoch)]
  echo "$0: Every epoch, splitting the data up into $iters_per_epoch iterations,"
  echo "$0: giving samples-per-iteration of $samples_per_iter_real (you requested $samples_per_iter)."
  
  # Making soft links to storage directories.  This is a no-up unless
  # the subdirectory $dir/egs/storage/ exists.  See utils/create_split_dir.pl
  for x in `seq 1 $num_jobs_nnet`; do
    for y in `seq 0 $[$iters_per_epoch-1]`; do
      utils/create_data_link.pl $dir/egs/egs.$x.$y.ark
      utils/create_data_link.pl $dir/egs/egs_tmp.$x.$y.ark
    done
    for y in `seq 1 $nj`; do
      utils/create_data_link.pl $dir/egs/egs_orig.$x.$y.ark
    done
  done
  
  remove () { for x in $*; do [ -L $x ] && rm $(utils/make_absolute.sh $x); rm $x; done }
  
  set -o pipefail
  left_context=$(nnet-am-info $mdl | grep '^left-context' | awk '{print $2}') || exit 1;
  right_context=$(nnet-am-info $mdl | grep '^right-context' | awk '{print $2}') || exit 1;
  nnet_context_opts="--left-context=$left_context --right-context=$right_context"
  set +o pipefail
  
  mkdir -p $dir/egs
  
  if [ $stage -le 2 ]; then
    rm $dir/.error 2>/dev/null
  
    echo "$0: extracting validation and training-subset alignments."
    set -o pipefail;
    for id in $(seq $nj); do gunzip -c $alidir/ali.$id.gz; done | \
      copy-int-vector ark:- ark,t:- | \
      utils/filter_scp.pl <(cat $dir/valid/uttlist $dir/train_subset/uttlist) | \
      gzip -c >$dir/ali_special.gz || exit 1;
    set +o pipefail; # unset the pipefail option.
  
    echo "Getting validation and training subset examples."
    $cmd $dir/log/create_valid_subset.log \
      nnet-get-egs $ivectors_opt $nnet_context_opts "$valid_feats" \
       "ark,s,cs:gunzip -c $dir/ali_special.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \
       "ark:$dir/egs/valid_all.egs" || touch $dir/.error &
    $cmd $dir/log/create_train_subset.log \
      nnet-get-egs $ivectors_opt $nnet_context_opts "$train_subset_feats" \
      "ark,s,cs:gunzip -c $dir/ali_special.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" \
       "ark:$dir/egs/train_subset_all.egs" || touch $dir/.error &
    wait;
    [ -f $dir/.error ] && exit 1;
    echo "Getting subsets of validation examples for diagnostics and combination."
    $cmd $dir/log/create_valid_subset_combine.log \
      nnet-subset-egs --n=$num_valid_frames_combine ark:$dir/egs/valid_all.egs \
          ark:$dir/egs/valid_combine.egs || touch $dir/.error &
    $cmd $dir/log/create_valid_subset_diagnostic.log \
      nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/egs/valid_all.egs \
      ark:$dir/egs/valid_diagnostic.egs || touch $dir/.error &
  
    $cmd $dir/log/create_train_subset_combine.log \
      nnet-subset-egs --n=$num_train_frames_combine ark:$dir/egs/train_subset_all.egs \
      ark:$dir/egs/train_combine.egs || touch $dir/.error &
    $cmd $dir/log/create_train_subset_diagnostic.log \
      nnet-subset-egs --n=$num_frames_diagnostic ark:$dir/egs/train_subset_all.egs \
      ark:$dir/egs/train_diagnostic.egs || touch $dir/.error &
    wait
    [ -f $dir/.error ] && echo "Error detected while creating egs" && exit 1;
    cat $dir/egs/valid_combine.egs $dir/egs/train_combine.egs > $dir/egs/combine.egs
  
    for f in $dir/egs/{combine,train_diagnostic,valid_diagnostic}.egs; do
      [ ! -s $f ] && echo "No examples in file $f" && exit 1;
    done
    rm $dir/egs/valid_all.egs $dir/egs/train_subset_all.egs $dir/egs/{train,valid}_combine.egs $dir/ali_special.gz
  fi
  
  if [ $stage -le 3 ]; then
  
    # Other scripts might need to know the following info:
    echo $num_jobs_nnet >$dir/egs/num_jobs_nnet
    echo $iters_per_epoch >$dir/egs/iters_per_epoch
    echo $samples_per_iter_real >$dir/egs/samples_per_iter
  
    echo "Creating training examples";
    # in $dir/egs, create $num_jobs_nnet separate files with training examples.
    # The order is not randomized at this point.
  
    egs_list=
    for n in `seq 1 $num_jobs_nnet`; do
      egs_list="$egs_list ark:$dir/egs/egs_orig.$n.JOB.ark"
    done
    echo "Generating training examples on disk"
    # The examples will go round-robin to egs_list.
    $cmd $io_opts JOB=1:$nj $dir/log/get_egs.JOB.log \
      nnet-get-egs $ivectors_opt $nnet_context_opts "$feats" \
      "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-pdf $alidir/final.mdl ark:- ark:- | ali-to-post ark:- ark:- |" ark:- \| \
      nnet-copy-egs ark:- $egs_list || exit 1;
  fi
  
  if [ $stage -le 4 ]; then
    echo "$0: rearranging examples into parts for different parallel jobs"
    # combine all the "egs_orig.JOB.*.scp" (over the $nj splits of the data) and
    # then split into multiple parts egs.JOB.*.scp for different parts of the
    # data, 0 .. $iters_per_epoch-1.
  
    if [ $iters_per_epoch -eq 1 ]; then
      echo "$0: Since iters-per-epoch == 1, just concatenating the data."
      for n in `seq 1 $num_jobs_nnet`; do
        cat $dir/egs/egs_orig.$n.*.ark > $dir/egs/egs_tmp.$n.0.ark || exit 1;
        remove $dir/egs/egs_orig.$n.*.ark
      done
    else # We'll have to split it up using nnet-copy-egs.
      egs_list=
      for n in `seq 0 $[$iters_per_epoch-1]`; do
        egs_list="$egs_list ark:$dir/egs/egs_tmp.JOB.$n.ark"
      done
      # note, the "|| true" below is a workaround for NFS bugs
      # we encountered running this script with Debian-7, NFS-v4.
      $cmd $io_opts JOB=1:$num_jobs_nnet $dir/log/split_egs.JOB.log \
        nnet-copy-egs --random=$random_copy --srand=JOB \
          "ark:cat $dir/egs/egs_orig.JOB.*.ark|" $egs_list || exit 1;
      remove $dir/egs/egs_orig.*.*.ark  2>/dev/null
    fi
  fi
  
  if [ $stage -le 5 ]; then
    # Next, shuffle the order of the examples in each of those files.
    # Each one should not be too large, so we can do this in memory.
    echo "Shuffling the order of training examples"
    echo "(in order to avoid stressing the disk, these won't all run at once)."
  
    for n in `seq 0 $[$iters_per_epoch-1]`; do
      $cmd $io_opts JOB=1:$num_jobs_nnet $dir/log/shuffle.$n.JOB.log \
        nnet-shuffle-egs "--srand=\$[JOB+($num_jobs_nnet*$n)]" \
        ark:$dir/egs/egs_tmp.JOB.$n.ark ark:$dir/egs/egs.JOB.$n.ark
      remove $dir/egs/egs_tmp.*.$n.ark
    done
  fi
  
  echo "$0: Finished preparing training examples"