Blame view
egs/wsj/s5/steps/train_map.sh
4.68 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # Train a model on top of existing features (no feature-space learning of any # kind is done). This script does not re-train the tree, it just does one iteration # of MAP adaptation to the model in the input alignment-directory. It's useful for # adapting a system to a specific gender, or new acoustic conditions. # Note: what we implement here is not the MAP from the paper by Gauvain and Lee, # it's the simpler (and, I believe, more widely used) so-called "relevance MAP", # implemented in HTK, where we add a fixed count "tau" of fake Gaussian stats # generated from the old model, to the new 'in-domain' stats from the features # and alignments provided; and we only update the mean. So if the new count # is zero it just gives you the Gaussian parameters from the old model, but as # you get more than about tau counts, it approaches the in-domain stats. # We use 'gmm-ismooth-stats' in the command line because the equations for this # are the same as the equations for i-smoothing in discriminative training # (for which, see my [Dan Povey's] PhD thesis). # Begin configuration.. cmd=run.pl stage=0 tau=20 # smoothing constant used in MAP estimation, corresponds to the number of # "fake counts" that we add for the old model. Larger tau corresponds to less # aggressive re-estimation, and more smoothing. You might want to try 10 or 15 also # End configuration section. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: steps/train_map.sh <data> <lang> <ali-dir> <exp-dir>" echo " e.g.: steps/train_map.sh data/train_si84_female data/lang exp/tri3c_ali_si84_female exp/tri4b_female" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." exit 1; fi data=$1 lang=$2 alidir=$3 dir=$4 for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set various variables. nj=`cat $alidir/num_jobs` || exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. cmvn_opts=`cat $alidir/cmvn_opts 2>/dev/null` delta_opts=`cat $alidir/delta_opts 2>/dev/null` mkdir -p $dir/log utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; cp $alidir/tree $dir # link ali.*.gz from $alidir to dest directory. utils/ln.pl $alidir/ali.*.gz $dir echo $nj >$dir/num_jobs cp $alidir/splice_opts $dir 2>/dev/null cp $alidir/cmvn_opts $dir 2>/dev/null # cmn/cmvn option. cp $alidir/delta_opts $dir 2>/dev/null [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; ## Set up features. if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";; lda) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir cp $alidir/full.mat $dir 2>/dev/null ;; *) echo "Invalid feature type $feat_type" && exit 1; esac if [ -f $alidir/trans.1 ]; then echo "$0: using transforms from $alidir" ln.pl $alidir/trans.* $dir # Link them to dest dir. feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" else feats="$sifeats" fi ## if [ $stage -le 0 ]; then $cmd JOB=1:$nj $dir/log/acc.JOB.log \ gmm-acc-stats-ali $alidir/final.mdl "$feats" \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz|" $dir/0.JOB.acc || exit 1; [ "`ls $dir/0.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1; $cmd $dir/log/sum_accs.log \ gmm-sum-accs $dir/0.acc $dir/0.*.acc || exit 1; rm $dir/0.*.acc fi if [ $stage -le 1 ]; then # Update only the model means. This is traditional in MAP estimation. $cmd $dir/log/update.log \ gmm-ismooth-stats --smooth-from-model --tau=$tau $alidir/final.mdl $dir/0.acc - \| \ gmm-est --update-flags=m --write-occs=$dir/final.occs --remove-low-count-gaussians=false \ $alidir/final.mdl - $dir/final.mdl || exit 1; fi echo Done |