Blame view
egs/wsj/s5/steps/train_mmi.sh
6.85 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # MMI training (or optionally boosted MMI, if you give the --boost option). # 4 iterations (by default) of Extended Baum-Welch update. # # For the numerator we have a fixed alignment rather than a lattice-- # this actually follows from the way lattices are defined in Kaldi, which # is to have a single path for each word (output-symbol) sequence. # Begin configuration section. cmd=run.pl num_iters=4 boost=0.0 cancel=true # if true, cancel num and den counts on each frame. drop_frames=false # if true, ignore stats from frames where num + den # have no overlap. tau=400 weight_tau=10 acwt=0.1 stage=0 # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 5 ]; then echo "Usage: steps/train_mmi.sh <data> <lang> <ali> <denlats> <exp>" echo " e.g.: steps/train_mmi.sh data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri2b_denlats_si84 exp/tri2b_mmi" echo "Main options (for others, see top of script file)" echo " --boost <boost-weight> # (e.g. 0.1), for boosted MMI. (default 0)" echo " --cancel (true|false) # cancel stats (true by default)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." echo " --tau # tau for i-smooth to last iter (default 200)" exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 dir=$5 mkdir -p $dir/log utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; for f in $data/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $alidir/num_jobs` || exit 1; [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \ echo "$alidir and $denlatdir have different num-jobs" && exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` cmvn_opts=`cat $alidir/cmvn_opts 2>/dev/null` delta_opts=`cat $alidir/delta_opts 2>/dev/null` mkdir -p $dir/log cp $alidir/splice_opts $dir 2>/dev/null cp $alidir/cmvn_opts $dir 2>/dev/null # cmn/cmvn option. cp $alidir/delta_opts $dir 2>/dev/null [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs cp $alidir/tree $dir cp $alidir/final.mdl $dir/0.mdl silphonelist=`cat $lang/phones/silence.csl` || exit 1; # Set up features if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac [ -f $alidir/trans.1 ] && echo Using transforms from $alidir && \ feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$alidir/trans.JOB ark:- ark:- |" lats="ark:gunzip -c $denlatdir/lat.JOB.gz|" if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then lats="$lats lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl ark:- 'ark,s,cs:gunzip -c $alidir/ali.JOB.gz|' ark:- |" fi x=0 while [ $x -lt $num_iters ]; do echo "Iteration $x of MMI training" # Note: the num and den states are accumulated at the same time, so we # can cancel them per frame. if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-rescore-lattice $dir/$x.mdl "$lats" "$feats" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ sum-post --drop-frames=$drop_frames --merge=$cancel --scale1=-1 \ ark:- "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- \| \ gmm-acc-stats2 $dir/$x.mdl "$feats" ark,s,cs:- \ $dir/num_acc.$x.JOB.acc $dir/den_acc.$x.JOB.acc || exit 1; n=`echo $dir/{num,den}_acc.$x.*.acc | wc -w`; [ "$n" -ne $[$nj*2] ] && \ echo "Wrong number of MMI accumulators $n versus 2*$nj" && exit 1; $cmd $dir/log/den_acc_sum.$x.log \ gmm-sum-accs $dir/den_acc.$x.acc $dir/den_acc.$x.*.acc || exit 1; rm $dir/den_acc.$x.*.acc $cmd $dir/log/num_acc_sum.$x.log \ gmm-sum-accs $dir/num_acc.$x.acc $dir/num_acc.$x.*.acc || exit 1; rm $dir/num_acc.$x.*.acc # note: this tau value is for smoothing towards model parameters, not # as in the Boosted MMI paper, not towards the ML stats as in the earlier # work on discriminative training (e.g. my thesis). # You could use gmm-ismooth-stats to smooth to the ML stats, if you had # them available [here they're not available if cancel=true]. $cmd $dir/log/update.$x.log \ gmm-est-gaussians-ebw --tau=$tau $dir/$x.mdl $dir/num_acc.$x.acc $dir/den_acc.$x.acc - \| \ gmm-est-weights-ebw --weight-tau=$weight_tau - $dir/num_acc.$x.acc $dir/den_acc.$x.acc $dir/$[$x+1].mdl || exit 1; rm $dir/{den,num}_acc.$x.acc fi # Some diagnostics: the objective function progress and auxiliary-function # improvement. tail -n 50 $dir/log/acc.$x.*.log | perl -e '$acwt=shift @ARGV; while(<STDIN>) { if(m/gmm-acc-stats2.+Overall weighted acoustic likelihood per frame was (\S+) over (\S+) frames/) { $tot_aclike += $1*$2; $tot_frames1 += $2; } if(m|lattice-to-post.+Overall average log-like/frame is (\S+) over (\S+) frames. Average acoustic like/frame is (\S+)|) { $tot_den_lat_like += $1*$2; $tot_frames2 += $2; $tot_den_aclike += $3*$2; } } if (abs($tot_frames1 - $tot_frames2) > 0.01*($tot_frames1 + $tot_frames2)) { print STDERR "Frame-counts disagree $tot_frames1 versus $tot_frames2 "; } $tot_den_lat_like /= $tot_frames2; $tot_den_aclike /= $tot_frames2; $tot_aclike *= ($acwt / $tot_frames1); $num_like = $tot_aclike + $tot_den_aclike; $per_frame_objf = $num_like - $tot_den_lat_like; print "$per_frame_objf $tot_frames1 "; ' $acwt > $dir/tmpf objf=`cat $dir/tmpf | awk '{print $1}'`; nf=`cat $dir/tmpf | awk '{print $2}'`; rm $dir/tmpf impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'` impr=`perl -e "print ($impr*$acwt/$nf);"` # We multiply by acwt, and divide by $nf which is the "real" number of frames. echo "Iteration $x: objf was $objf, MMI auxf change was $impr" | tee $dir/objf.$x.log x=$[$x+1] done echo "MMI training finished" rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl exit 0; |