Blame view

egs/wsj/s5/steps/train_mmi_sgmm2.sh 6.93 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  #!/bin/bash
  # Copyright 2012-2013  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  
  # MMI training (or optionally boosted MMI, if you give the --boost option),
  # for SGMMs.  4 iterations (by default) of Extended Baum-Welch update.
  #
  # Begin configuration section.
  cmd=run.pl
  num_iters=4
  boost=0.0
  cancel=true # if true, cancel num and den counts on each frame.
  drop_frames=false # this is the same as frame dropping (see Karel's ICASSP2013 paper).
  acwt=0.1
  stage=0
  update_opts=
  transform_dir=
  # End configuration section
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f ./path.sh ] && . ./path.sh; # source the path.
  . parse_options.sh || exit 1;
  
  if [ $# -ne 5 ]; then
    echo "Usage: steps/train_mmi_sgmm2.sh <data> <lang> <ali> <denlats> <exp>"
    echo " e.g.: steps/train_mmi_sgmm2.sh data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri2b_denlats_si84 exp/tri2b_mmi"
    echo "Main options (for others, see top of script file)"
    echo "  --boost <boost-weight>                           # (e.g. 0.1), for boosted MMI.  (default 0)"
    echo "  --cancel (true|false)                            # cancel stats (true by default)"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --config <config-file>                           # config containing options"
    echo "  --stage <stage>                                  # stage to do partial re-run from."  
    echo "  --transform-dir <transform-dir>                  # directory to find fMLLR transforms."
    exit 1;
  fi
  
  data=$1
  lang=$2
  alidir=$3
  denlatdir=$4
  dir=$5
  mkdir -p $dir/log
  
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
  cp $lang/phones.txt $dir || exit 1;
  
  for f in $data/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.1.gz; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  nj=`cat $alidir/num_jobs` || exit 1;
  [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \
    echo "$alidir and $denlatdir have different num-jobs" && exit 1;
  
  sdata=$data/split$nj
  splice_opts=`cat $alidir/splice_opts 2>/dev/null`
  cmvn_opts=`cat $alidir/cmvn_opts 2>/dev/null`
  mkdir -p $dir/log
  cp $alidir/splice_opts $dir 2>/dev/null
  cp $alidir/cmvn_opts $dir 2>/dev/null # cmn/cmvn option.
  [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
  echo $nj > $dir/num_jobs
  
  cp $alidir/tree $dir
  cp $alidir/final.mdl $dir/0.mdl
  cp $alidir/final.alimdl $dir
  
  silphonelist=`cat $lang/phones/silence.csl` || exit 1;
  
  # Set up features
  
  if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
  echo "$0: feature type is $feat_type"
  
  case $feat_type in
    delta) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";;
    lda) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |"
      cp $alidir/final.mat $dir    
      ;;
    *) echo "Invalid feature type $feat_type" && exit 1;
  esac
  
  if [ ! -z "$transform_dir" ]; then
    echo "$0: using transforms from $transform_dir"
    [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" \
      && exit 1;
    feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |"
  else
    echo "$0: no fMLLR transforms."
  fi
  
  if [ -f $alidir/vecs.1 ]; then
    echo "$0: using speaker vectors from $alidir"
    spkvecs_opt="--spk-vecs=ark:$alidir/vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk"
  else
    echo "$0: no speaker vectors."
    spkvecs_opt=
  fi
  
  if [ -f $alidir/gselect.1.gz ]; then
    echo "$0: using Gaussian-selection info from $alidir"
    gselect_opt="--gselect=ark,s,cs:gunzip -c $alidir/gselect.JOB.gz|"
  else
    echo "$0: error: no Gaussian-selection info found" && exit 1;
  fi
  
  lats="ark:gunzip -c $denlatdir/lat.JOB.gz|"
  if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then
    lats="$lats lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl ark:- 'ark,s,cs:gunzip -c $alidir/ali.JOB.gz|' ark:- |"
  fi
  
  x=0
  while [ $x -lt $num_iters ]; do
    echo "Iteration $x of MMI training"
    # Note: the num and den states are accumulated at the same time: 
    # can cancel them per frame.
    if [ $stage -le $x ]; then
      $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
        test -s $dir/den_acc.$x.JOB.gz -a -s $dir/num_acc.$x.JOB.gz '||' \
        sgmm2-rescore-lattice --speedup=true "$gselect_opt" $spkvecs_opt $dir/$x.mdl "$lats" "$feats" ark:- \| \
        lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
        sum-post --drop-frames=$drop_frames --merge=$cancel --scale1=-1 \
        ark:- "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- \| \
        sgmm2-acc-stats2 "$gselect_opt" $spkvecs_opt $dir/$x.mdl "$feats" ark,s,cs:- \
        "|gzip -c >$dir/num_acc.$x.JOB.gz" "|gzip -c >$dir/den_acc.$x.JOB.gz" || exit 1;
  
      n=`echo $dir/{num,den}_acc.$x.*.gz | wc -w`;
      [ "$n" -ne $[$nj*2] ] && \
        echo "Wrong number of MMI accumulators $n versus 2*$nj" && exit 1;
      num_acc_sum="sgmm2-sum-accs - ";
      den_acc_sum="sgmm2-sum-accs - ";
      for j in `seq $nj`; do 
        num_acc_sum="$num_acc_sum 'gunzip -c $dir/num_acc.$x.$j.gz|'"; 
        den_acc_sum="$den_acc_sum 'gunzip -c $dir/den_acc.$x.$j.gz|'"; 
      done
      $cmd $dir/log/update.$x.log \
       sgmm2-est-ebw $update_opts $dir/$x.mdl "$num_acc_sum |" "$den_acc_sum |" \
        $dir/$[$x+1].mdl || exit 1;
      rm $dir/*_acc.$x.*.gz 
    fi
  
    # Some diagnostics: the objective function progress and auxiliary-function
    # improvement.  Note: this code is same as in train_mmi.sh
    tail -n 50 $dir/log/acc.$x.*.log | perl -e '$acwt=shift @ARGV; while(<STDIN>) { if(m/sgmm2-acc-stats2.+Overall weighted acoustic likelihood per frame was (\S+) over (\S+) frames/) { $tot_aclike += $1*$2; $tot_frames1 += $2; } if(m|lattice-to-post.+Overall average log-like/frame is (\S+) over (\S+) frames.  Average acoustic like/frame is (\S+)|) { $tot_den_lat_like += $1*$2; $tot_frames2 += $2; $tot_den_aclike += $3*$2; } } if (abs($tot_frames1 - $tot_frames2) > 0.01*($tot_frames1 + $tot_frames2)) { print STDERR "Frame-counts disagree $tot_frames1 versus $tot_frames2
  "; } $tot_den_lat_like /= $tot_frames2; $tot_den_aclike /= $tot_frames2; $tot_aclike *= ($acwt / $tot_frames1);  $num_like = $tot_aclike + $tot_den_aclike; $per_frame_objf = $num_like - $tot_den_lat_like; print "$per_frame_objf $tot_frames1
  "; ' $acwt > $dir/tmpf
    objf=`cat $dir/tmpf | awk '{print $1}'`;
    nf=`cat $dir/tmpf | awk '{print $2}'`;
    rm $dir/tmpf
    impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'`
    impr=`perl -e "print ($impr*$acwt/$nf);"` # We multiply by acwt, and divide by $nf which is the "real" number of frames.
    echo "Iteration $x: objf was $objf, MMI auxf change was $impr" | tee $dir/objf.$x.log
    x=$[$x+1]
  done
  
  echo "MMI training finished"
  
  rm $dir/final.mdl 2>/dev/null
  rm $dir/*.acc 2>/dev/null
  ln -s $x.mdl $dir/final.mdl
  
  exit 0;