Blame view

egs/wsj/s5/steps/train_quick.sh 8.03 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  #!/bin/bash
  # Copyright 2012  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  
  
  # Train a model on top of existing features (no feature-space learning of any
  # kind is done).  This script initializes the model (i.e., the GMMs) from the
  # previous system's model.  That is: for each state in the current model (after
  # tree building), it chooses the closes state in the old model, judging the
  # similarities based on overlap of counts in the tree stats.
  
  # Begin configuration..
  cmd=run.pl
  scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
  realign_iters="10 15"; # Only realign twice.
  num_iters=20    # Number of iterations of training
  maxiterinc=15 # Last iter to increase #Gauss on.
  batch_size=750 # batch size to use while compiling graphs... memory/speed tradeoff.
  beam=10 # alignment beam.
  retry_beam=40
  stage=-5
  cluster_thresh=-1  # for build-tree control final bottom-up clustering of leaves
  # End configuration section.
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f path.sh ] && . ./path.sh
  . parse_options.sh || exit 1;
  
  if [ $# != 6 ]; then
    echo "Usage: steps/train_quick.sh <num-leaves> <num-gauss> <data> <lang> <ali-dir> <exp-dir>"
    echo " e.g.: steps/train_quick.sh 2500 15000 data/train_si284 data/lang exp/tri3c_ali_si284 exp/tri4b"
    echo "Main options (for others, see top of script file)"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --config <config-file>                           # config containing options"
    echo "  --stage <stage>                                  # stage to do partial re-run from."
    exit 1;
  fi
  
  numleaves=$1
  totgauss=$2
  data=$3
  lang=$4
  alidir=$5
  dir=$6
  
  for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  # Set various variables.
  oov=`cat $lang/oov.int`
  silphonelist=`cat $lang/phones/silence.csl`
  ciphonelist=`cat $lang/phones/context_indep.csl`
  numgauss=$[totgauss/2] # Start with half the total number of Gaussians.  We won't have
    # to mix up much probably, as we're initializing with the old (already mixed-up) pdf's.  
  [ $numgauss -lt $numleaves ] && numgauss=$numleaves
  incgauss=$[($totgauss-$numgauss)/$maxiterinc] # per-iter increment for #Gauss
  nj=`cat $alidir/num_jobs` || exit 1;
  sdata=$data/split$nj
  splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options.
  cmvn_opts=`cat $alidir/cmvn_opts 2>/dev/null`
  delta_opts=`cat $alidir/delta_opts 2>/dev/null`
  
  mkdir -p $dir/log
  echo $nj >$dir/num_jobs
  cp $alidir/splice_opts $dir 2>/dev/null
  cp $alidir/cmvn_opts $dir 2>/dev/null # cmn/cmvn option.
  cp $alidir/delta_opts $dir 2>/dev/null
  [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
  
  utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
  cp $lang/phones.txt $dir || exit 1;
  
  ## Set up features.
  if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
  echo "$0: feature type is $feat_type"
  
  case $feat_type in
    delta) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";;
    lda) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |"
      cp $alidir/final.mat $dir    
      cp $alidir/full.mat $dir 2>/dev/null
      ;;
    *) echo "Invalid feature type $feat_type" && exit 1;
  esac
  if [ -f $alidir/trans.1 ]; then
    echo "$0: using transforms from $alidir"
    ln.pl $alidir/trans.* $dir # Link them to dest dir.
    feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |"
  else
    feats="$sifeats"
  fi
  ##
  
  
  if [ $stage -le -5 ]; then
    echo "$0: accumulating tree stats"
    $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
      acc-tree-stats  --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \
      "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
    [ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-stats" && exit 1;
    sum-tree-stats $dir/treeacc $dir/*.treeacc 2>$dir/log/sum_tree_acc.log || exit 1;
    rm $dir/*.treeacc
  fi
  
  if [ $stage -le -4 ]; then
    echo "$0: Getting questions for tree clustering."
    # preparing questions, roots file...
    cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1;
    cat $lang/phones/extra_questions.int >> $dir/questions.int
    compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
  
    echo "$0: Building the tree"
    $cmd $dir/log/build_tree.log \
      build-tree --verbose=1 --max-leaves=$numleaves \
      --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
      $dir/questions.qst $lang/topo $dir/tree || exit 1;
  fi
  
  if [ $stage -le -3 ]; then
    echo "$0: Initializing the model"
  
    # The gmm-init-model command (with more than the normal # of command-line args)
    # will initialize the p.d.f.'s to the p.d.f.'s in the alignment model.
  
    gmm-init-model  --write-occs=$dir/1.occs  \
      $dir/tree $dir/treeacc $lang/topo $dir/tmp.mdl $alidir/tree $alidir/final.mdl  \
      2>$dir/log/init_model.log || exit 1;
  
    grep 'no stats' $dir/log/init_model.log && echo "$0: This is a bad warning.";
    rm $dir/treeacc
  fi
  
  if [ $stage -le -2 ]; then
    echo "$0: mixing up old model."
    # We do both mixing-down and mixing-up to get the target #Gauss in each state,
    # since the initial model may have either more or fewer Gaussians than we want.
    gmm-mixup --mix-down=$numgauss --mix-up=$numgauss $dir/tmp.mdl $dir/1.occs $dir/1.mdl \
      2> $dir/log/mixup.log || exit 1;
    rm $dir/tmp.mdl 
  fi
  
  # Convert alignments to the new tree.
  if [ $stage -le -1 ]; then
    echo "$0: converting old alignments"
    $cmd JOB=1:$nj $dir/log/convert.JOB.log \
      convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \
      "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
  fi
  
  if [ $stage -le 0 ]; then
    echo "$0: compiling training graphs"
    $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
      compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int --batch-size=$batch_size $dir/tree $dir/1.mdl $lang/L.fst  \
      "ark:sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata/JOB/text |" \
      "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
  fi
  
  x=1
  while [ $x -lt $num_iters ]; do
    echo "$0: pass $x"
    if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then
      echo "$0: aligning data"
      $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
        gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $dir/$x.mdl \
        "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" \
        || exit 1;
    fi
    if [ $stage -le $x ]; then
      $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
        gmm-acc-stats-ali  $dir/$x.mdl "$feats" \
        "ark,s,cs:gunzip -c $dir/ali.JOB.gz|"  $dir/$x.JOB.acc || exit 1;
      [ "`ls $dir/$x.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1;
      $cmd $dir/log/update.$x.log \
        gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \
        "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
      rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs
    fi
    [[ $x -le $maxiterinc ]] && numgauss=$[$numgauss+$incgauss];
    x=$[$x+1];
  done
  
  if [ -f $alidir/trans.1 ]; then
    echo "$0: estimating alignment model"
    $cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \
      ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:-  \| \
      gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \
      ark,s,cs:- $dir/$x.JOB.acc || exit 1;
    [ "`ls $dir/$x.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1;
  
    $cmd $dir/log/est_alimdl.log \
      gmm-est --write-occs=$dir/final.occs --remove-low-count-gaussians=false $dir/$x.mdl \
      "gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1;
    rm $dir/$x.*.acc
    rm $dir/final.alimdl 2>/dev/null 
    ln -s $x.alimdl $dir/final.alimdl
  fi
  
  rm $dir/final.mdl 2>/dev/null
  ln -s $x.mdl $dir/final.mdl
  
  echo Done