Blame view
egs/wsj/s5/utils/lang/bpe/learn_bpe.py
9.85 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Rico Sennrich # Released under the MIT License. """Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text. Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary of a text to a configurable number of symbols, with only a small increase in the number of tokens. Reference: Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. """ from __future__ import unicode_literals from __future__ import division from __future__ import print_function import sys import codecs import re import copy import argparse from collections import defaultdict, Counter # hack for python2/3 compatibility from io import open argparse.open = open def create_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description="learn BPE-based word segmentation") parser.add_argument( '--input', '-i', type=argparse.FileType('r'), default=sys.stdin, metavar='PATH', help="Input text (default: standard input).") parser.add_argument( '--output', '-o', type=argparse.FileType('w'), default=sys.stdout, metavar='PATH', help="Output file for BPE codes (default: standard output)") parser.add_argument( '--symbols', '-s', type=int, default=10000, help="Create this many new symbols (each representing a character n-gram) (default: %(default)s))") parser.add_argument( '--min-frequency', type=int, default=2, metavar='FREQ', help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s))') parser.add_argument('--dict-input', action="store_true", help="If set, input file is interpreted as a dictionary where each line contains a word-count pair") parser.add_argument( '--verbose', '-v', action="store_true", help="verbose mode.") return parser def get_vocabulary(fobj, is_dict=False): """Read text and return dictionary that encodes vocabulary """ vocab = Counter() for i, line in enumerate(fobj): if is_dict: try: word, count = line.strip().split(' ') except: print('Failed reading vocabulary file at line {0}: {1}'.format(i, line)) sys.exit(1) vocab[word] += int(count) else: for word in line.strip().split(' '): if word: vocab[word] += 1 return vocab def update_pair_statistics(pair, changed, stats, indices): """Minimally update the indices and frequency of symbol pairs if we merge a pair of symbols, only pairs that overlap with occurrences of this pair are affected, and need to be updated. """ stats[pair] = 0 indices[pair] = defaultdict(int) first, second = pair new_pair = first+second for j, word, old_word, freq in changed: # find all instances of pair, and update frequency/indices around it i = 0 while True: # find first symbol try: i = old_word.index(first, i) except ValueError: break # if first symbol is followed by second symbol, we've found an occurrence of pair (old_word[i:i+2]) if i < len(old_word)-1 and old_word[i+1] == second: # assuming a symbol sequence "A B C", if "B C" is merged, reduce the frequency of "A B" if i: prev = old_word[i-1:i+1] stats[prev] -= freq indices[prev][j] -= 1 if i < len(old_word)-2: # assuming a symbol sequence "A B C B", if "B C" is merged, reduce the frequency of "C B". # however, skip this if the sequence is A B C B C, because the frequency of "C B" will be reduced by the previous code block if old_word[i+2] != first or i >= len(old_word)-3 or old_word[i+3] != second: nex = old_word[i+1:i+3] stats[nex] -= freq indices[nex][j] -= 1 i += 2 else: i += 1 i = 0 while True: try: # find new pair i = word.index(new_pair, i) except ValueError: break # assuming a symbol sequence "A BC D", if "B C" is merged, increase the frequency of "A BC" if i: prev = word[i-1:i+1] stats[prev] += freq indices[prev][j] += 1 # assuming a symbol sequence "A BC B", if "B C" is merged, increase the frequency of "BC B" # however, if the sequence is A BC BC, skip this step because the count of "BC BC" will be incremented by the previous code block if i < len(word)-1 and word[i+1] != new_pair: nex = word[i:i+2] stats[nex] += freq indices[nex][j] += 1 i += 1 def get_pair_statistics(vocab): """Count frequency of all symbol pairs, and create index""" # data structure of pair frequencies stats = defaultdict(int) #index from pairs to words indices = defaultdict(lambda: defaultdict(int)) for i, (word, freq) in enumerate(vocab): prev_char = word[0] for char in word[1:]: stats[prev_char, char] += freq indices[prev_char, char][i] += 1 prev_char = char return stats, indices def replace_pair(pair, vocab, indices): """Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'""" first, second = pair pair_str = ''.join(pair) pair_str = pair_str.replace('\\','\\\\') changes = [] pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)') if sys.version_info < (3, 0): iterator = indices[pair].iteritems() else: iterator = indices[pair].items() for j, freq in iterator: if freq < 1: continue word, freq = vocab[j] new_word = ' '.join(word) new_word = pattern.sub(pair_str, new_word) new_word = tuple(new_word.split(' ')) vocab[j] = (new_word, freq) changes.append((j, new_word, word, freq)) return changes def prune_stats(stats, big_stats, threshold): """Prune statistics dict for efficiency of max() The frequency of a symbol pair never increases, so pruning is generally safe (until we the most frequent pair is less frequent than a pair we previously pruned) big_stats keeps full statistics for when we need to access pruned items """ for item,freq in list(stats.items()): if freq < threshold: del stats[item] if freq < 0: big_stats[item] += freq else: big_stats[item] = freq def main(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False): """Learn num_symbols BPE operations from vocabulary, and write to outfile. """ # version 0.2 changes the handling of the end-of-word token ('</w>'); # version numbering allows bckward compatibility outfile.write('#version: 0.2 ') vocab = get_vocabulary(infile, is_dict) vocab = dict([(tuple(x[:-1])+(x[-1]+'</w>',) ,y) for (x,y) in vocab.items()]) sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True) stats, indices = get_pair_statistics(sorted_vocab) big_stats = copy.deepcopy(stats) # threshold is inspired by Zipfian assumption, but should only affect speed threshold = max(stats.values()) / 10 for i in range(num_symbols): if stats: most_frequent = max(stats, key=lambda x: (stats[x], x)) # we probably missed the best pair because of pruning; go back to full statistics if not stats or (i and stats[most_frequent] < threshold): prune_stats(stats, big_stats, threshold) stats = copy.deepcopy(big_stats) most_frequent = max(stats, key=lambda x: (stats[x], x)) # threshold is inspired by Zipfian assumption, but should only affect speed threshold = stats[most_frequent] * i/(i+10000.0) prune_stats(stats, big_stats, threshold) if stats[most_frequent] < min_frequency: sys.stderr.write('no pair has frequency >= {0}. Stopping '.format(min_frequency)) break if verbose: sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3}) '.format(i, most_frequent[0], most_frequent[1], stats[most_frequent])) outfile.write('{0} {1} '.format(*most_frequent)) changes = replace_pair(most_frequent, sorted_vocab, indices) update_pair_statistics(most_frequent, changes, stats, indices) stats[most_frequent] = 0 if not i % 100: prune_stats(stats, big_stats, threshold) if __name__ == '__main__': # python 2/3 compatibility if sys.version_info < (3, 0): sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) sys.stdin = codecs.getreader('UTF-8')(sys.stdin) else: sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer) sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer) parser = create_parser() args = parser.parse_args() # read/write files as UTF-8 if args.input.name != '<stdin>': args.input = codecs.open(args.input.name, encoding='utf-8') if args.output.name != '<stdout>': args.output = codecs.open(args.output.name, 'w', encoding='utf-8') main(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input) |