Blame view

egs/wsj/s5/utils/nnet/gen_dct_mat.py 2.06 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  #!/usr/bin/env python
  
  # Copyright 2012  Brno University of Technology (author: Karel Vesely)
  
  # Licensed under the Apache License, Version 2.0 (the "License");
  # you may not use this file except in compliance with the License.
  # You may obtain a copy of the License at
  #
  #  http://www.apache.org/licenses/LICENSE-2.0
  #
  # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  # MERCHANTABLITY OR NON-INFRINGEMENT.
  # See the Apache 2 License for the specific language governing permissions and
  # limitations under the License.
  
  # ./gen_dct_mat.py
  # script generates matrix with DCT transform, which is sparse
  # and takes into account that data-layout is along frequency axis,
  # while DCT is done along temporal axis.
  
  from __future__ import division
  from __future__ import print_function
  from math import *
  import sys
  
  
  from optparse import OptionParser
  
  def print_on_same_line(text):
      print(text, end=' ')
  
  parser = OptionParser()
  parser.add_option('--fea-dim', dest='dim', help='feature dimension')
  parser.add_option('--splice', dest='splice', help='applied splice value')
  parser.add_option('--dct-basis', dest='dct_basis', help='number of DCT basis')
  (options, args) = parser.parse_args()
  
  if(options.dim == None):
      parser.print_help()
      sys.exit(1)
  
  dim=int(options.dim)
  splice=int(options.splice)
  dct_basis=int(options.dct_basis)
  
  timeContext=2*splice+1
  
  
  #generate the DCT matrix
  M_PI = 3.1415926535897932384626433832795
  M_SQRT2 = 1.4142135623730950488016887
  
  
  #generate sparse DCT matrix
  print('[')
  for k in range(dct_basis):
      for m in range(dim):
          for n in range(timeContext):
            if(n==0):
                print_on_same_line(m*'0 ')
            else:
                print_on_same_line((dim-1)*'0 ')
            print_on_same_line(str(sqrt(2.0/timeContext)*cos(M_PI/timeContext*k*(n+0.5))))
            if(n==timeContext-1):
                print_on_same_line((dim-m-1)*'0 ')
          print()
      print()
  
  print(']')