Blame view
egs/wsj/s5/utils/nnet/make_cnn_proto.py
7.41 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
#!/usr/bin/env python # Copyright 2014 Brno University of Technology (author: Katerina Zmolikova, Karel Vesely) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # Generated Nnet prototype, to be initialized by 'nnet-initialize'. from __future__ import division from __future__ import print_function import math, random, sys from optparse import OptionParser ### ### Parse options ### usage="%prog [options] <feat-dim> <num-leaves> <num-hidden-layers> <num-hidden-neurons> >nnet-proto-file" parser = OptionParser(usage) parser.add_option('--activation-type', dest='activation_type', help='Select type of activation function : (<Sigmoid>|<Tanh>) [default: %default]', default='<Sigmoid>', type='string'); parser.add_option('--num-filters1', dest='num_filters1', help='Number of filters in first convolutional layer [default: %default]', default=128, type='int') parser.add_option('--num-filters2', dest='num_filters2', help='Number of filters in second convolutional layer [default: %default]', default=256, type='int') parser.add_option('--pool-size', dest='pool_size', help='Size of pooling [default: %default]', default=3, type='int') parser.add_option('--pool-step', dest='pool_step', help='Step of pooling [default: %default]', default=3, type='int') parser.add_option('--pool-type', dest='pool_type', help='Type of pooling (Max || Average) [default: %default]', default='Max', type='string') parser.add_option('--pitch-dim', dest='pitch_dim', help='Number of features representing pitch [default: %default]', default=0, type='int') parser.add_option('--delta-order', dest='delta_order', help='Order of delta features [default: %default]', default=2, type='int') parser.add_option('--splice', dest='splice', help='Length of splice [default: %default]', default=5,type='int') parser.add_option('--patch-step1', dest='patch_step1', help='Patch step of first convolutional layer [default: %default]', default=1, type='int') parser.add_option('--patch-dim1', dest='patch_dim1', help='Dim of convolutional kernel in 1st layer (freq. axis) [default: %default]', default=8, type='int') parser.add_option('--patch-dim2', dest='patch_dim2', help='Dim of convolutional kernel in 2nd layer (freq. axis) [default: %default]', default=4, type='int') parser.add_option('--dir', dest='protodir', help='Directory, where network prototypes will be saved [default: %default]', default='.', type='string') parser.add_option('--num-pitch-neurons', dest='num_pitch_neurons', help='Number of neurons in layers processing pitch features [default: %default]', default='200', type='int') (o,args) = parser.parse_args() if len(args) != 1 : parser.print_help() sys.exit(1) feat_dim = int(args[0]); ### End parse options feat_raw_dim = feat_dim / (o.delta_order+1) / (o.splice*2+1) - o.pitch_dim # we need number of feats without deltas and splice and pitch # Check assert(feat_dim > 0) assert(o.pool_type == 'Max' or o.pool_type == 'Average') ### ### Print prototype of the network ### # Begin the prototype print("<NnetProto>") # Convolutional part of network num_patch1 = 1 + (feat_raw_dim - o.patch_dim1) / o.patch_step1 num_pool = 1 + (num_patch1 - o.pool_size) / o.pool_step patch_dim2 = o.patch_dim2 patch_step2 = o.patch_step1 patch_stride2 = num_pool # same as layer1 outputs num_patch2 = 1 + (num_pool - patch_dim2) / patch_step2 inputdim_of_cnn = feat_dim outputdim_of_cnn = o.num_filters2*num_patch2 convolution_proto = '' convolution_proto += "<ConvolutionalComponent> <InputDim> %d <OutputDim> %d <PatchDim> %d <PatchStep> %d <PatchStride> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <MaxNorm> %f " % \ (feat_raw_dim * (o.delta_order+1) * (o.splice*2+1), o.num_filters1 * num_patch1, o.patch_dim1, o.patch_step1, feat_raw_dim, -1.0, 2.0, 0.02, 30) #~8x11x3 = 264 inputs convolution_proto += "<%sPoolingComponent> <InputDim> %d <OutputDim> %d <PoolSize> %d <PoolStep> %d <PoolStride> %d " % \ (o.pool_type, o.num_filters1*num_patch1, o.num_filters1*num_pool, o.pool_size, o.pool_step, o.num_filters1) convolution_proto += "<Rescale> <InputDim> %d <OutputDim> %d <InitParam> %f " % \ (o.num_filters1*num_pool, o.num_filters1*num_pool, 1) convolution_proto += "<AddShift> <InputDim> %d <OutputDim> %d <InitParam> %f " % \ (o.num_filters1*num_pool, o.num_filters1*num_pool, 0) convolution_proto += "%s <InputDim> %d <OutputDim> %d " % \ (o.activation_type, o.num_filters1*num_pool, o.num_filters1*num_pool) convolution_proto += "<ConvolutionalComponent> <InputDim> %d <OutputDim> %d <PatchDim> %d <PatchStep> %d <PatchStride> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <MaxNorm> %f " % \ (o.num_filters1*num_pool, outputdim_of_cnn, patch_dim2, patch_step2, patch_stride2, -2.0, 4.0, 0.1, 50) #~4x128 = 512 inputs convolution_proto += "<Rescale> <InputDim> %d <OutputDim> %d <InitParam> %f " % \ (outputdim_of_cnn, outputdim_of_cnn, 1) convolution_proto += "<AddShift> <InputDim> %d <OutputDim> %d <InitParam> %f " % \ (outputdim_of_cnn, outputdim_of_cnn, 0) convolution_proto += "%s <InputDim> %d <OutputDim> %d " % \ (o.activation_type, outputdim_of_cnn, outputdim_of_cnn) if (o.pitch_dim > 0): # convolutional part f_conv = open('%s/nnet.proto.convolution' % o.protodir, 'w') f_conv.write('<NnetProto> ') f_conv.write(convolution_proto) f_conv.write('</NnetProto> ') f_conv.close() # pitch part f_pitch = open('%s/nnet.proto.pitch' % o.protodir, 'w') f_pitch.write('<NnetProto> ') f_pitch.write('<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f ' % \ ((o.pitch_dim * (o.delta_order+1) * (o.splice*2+1)), o.num_pitch_neurons, -2, 4, 0.02)) f_pitch.write('%s <InputDim> %d <OutputDim> %d ' % \ (o.activation_type, o.num_pitch_neurons, o.num_pitch_neurons)) f_pitch.write('<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f ' % \ (o.num_pitch_neurons, o.num_pitch_neurons, -2, 4, 0.1)) f_pitch.write('%s <InputDim> %d <OutputDim> %d ' % \ (o.activation_type, o.num_pitch_neurons, o.num_pitch_neurons)) f_pitch.write('</NnetProto> ') f_pitch.close() # paralell part vector = '' for i in range(1, inputdim_of_cnn, feat_raw_dim + o.pitch_dim): vector += '%d:1:%d ' % (i, i + feat_raw_dim - 1) for i in range(feat_raw_dim+1, inputdim_of_cnn + 1, feat_raw_dim + o.pitch_dim): vector += '%d:1:%d ' % (i, i + o.pitch_dim - 1) print('<Copy> <InputDim> %d <OutputDim> %d <BuildVector> %s </BuildVector>' % \ (inputdim_of_cnn, inputdim_of_cnn, vector)) print('<ParallelComponent> <InputDim> %d <OutputDim> %d <NestedNnetProto> %s %s </NestedNnetProto>' % \ (inputdim_of_cnn, o.num_pitch_neurons + outputdim_of_cnn, '%s/nnet.proto.convolution' % o.protodir, '%s/nnet.proto.pitch' % o.protodir)) else: # no pitch print(convolution_proto) # We are done! sys.exit(0) |