Blame view
egs/wsj/s5/utils/nnet/make_lstm_proto.py
4.13 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
#!/usr/bin/env python # Copyright 2015-2016 Brno University of Technology (author: Karel Vesely) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # Generated Nnet prototype, to be initialized by 'nnet-initialize'. from __future__ import print_function import sys ### ### Parse options ### from optparse import OptionParser usage="%prog [options] <feat-dim> <num-leaves> >nnet-proto-file" parser = OptionParser(usage) # Required, parser.add_option('--cell-dim', dest='cell_dim', type='int', default=320, help='Number of cells for one direction in LSTM [default: %default]'); parser.add_option('--proj-dim', dest='proj_dim', type='int', default=400, help='Number of LSTM recurrent units [default: %default]'); parser.add_option('--num-layers', dest='num_layers', type='int', default=2, help='Number of LSTM layers [default: %default]'); # Optional (default == 'None'), parser.add_option('--lstm-param-range', dest='lstm_param_range', type='float', help='Range of initial LSTM parameters [default: %default]'); parser.add_option('--param-stddev', dest='param_stddev', type='float', help='Standard deviation for initial weights of Softmax layer [default: %default]'); parser.add_option('--cell-clip', dest='cell_clip', type='float', help='Clipping cell values during propagation (per-frame) [default: %default]'); parser.add_option('--diff-clip', dest='diff_clip', type='float', help='Clipping partial-derivatives during BPTT (per-frame) [default: %default]'); parser.add_option('--cell-diff-clip', dest='cell_diff_clip', type='float', help='Clipping partial-derivatives of "cells" during BPTT (per-frame, those accumulated by CEC) [default: %default]'); parser.add_option('--grad-clip', dest='grad_clip', type='float', help='Clipping the accumulated gradients (per-updates) [default: %default]'); # (o,args) = parser.parse_args() if len(args) != 2 : parser.print_help() sys.exit(1) (feat_dim, num_leaves) = [int(i) for i in args]; # Original prototype from Jiayu, #<NnetProto> #<Transmit> <InputDim> 40 <OutputDim> 40 #<LstmProjectedStreams> <InputDim> 40 <OutputDim> 512 <CellDim> 800 <ParamScale> 0.01 <NumStream> 4 #<AffineTransform> <InputDim> 512 <OutputDim> 8000 <BiasMean> 0.000000 <BiasRange> 0.000000 <ParamStddev> 0.04 #<Softmax> <InputDim> 8000 <OutputDim> 8000 #</NnetProto> lstm_extra_opts="" if None != o.lstm_param_range: lstm_extra_opts += "<ParamRange> %f " % o.lstm_param_range if None != o.cell_clip: lstm_extra_opts += "<CellClip> %f " % o.cell_clip if None != o.diff_clip: lstm_extra_opts += "<DiffClip> %f " % o.diff_clip if None != o.cell_diff_clip: lstm_extra_opts += "<CellDiffClip> %f " % o.cell_diff_clip if None != o.grad_clip: lstm_extra_opts += "<GradClip> %f " % o.grad_clip softmax_affine_opts="" if None != o.param_stddev: softmax_affine_opts += "<ParamStddev> %f " % o.param_stddev # The LSTM layers, print("<LstmProjected> <InputDim> %d <OutputDim> %d <CellDim> %s" % (feat_dim, o.proj_dim, o.cell_dim) + lstm_extra_opts) for l in range(o.num_layers - 1): print("<LstmProjected> <InputDim> %d <OutputDim> %d <CellDim> %s" % (o.proj_dim, o.proj_dim, o.cell_dim) + lstm_extra_opts) # Adding <Tanh> for more stability, print("<Tanh> <InputDim> %d <OutputDim> %d" % (o.proj_dim, o.proj_dim)) # Softmax layer, print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> 0.0 <BiasRange> 0.0" % (o.proj_dim, num_leaves) + softmax_affine_opts) print("<Softmax> <InputDim> %d <OutputDim> %d" % (num_leaves, num_leaves)) |