Blame view

egs/wsj/s5/utils/nnet/make_nnet_proto.py 12.1 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  #!/usr/bin/env python
  
  # Copyright 2014-2016  Brno University of Technology (author: Karel Vesely)
  
  # Licensed under the Apache License, Version 2.0 (the "License");
  # you may not use this file except in compliance with the License.
  # You may obtain a copy of the License at
  #
  #  http://www.apache.org/licenses/LICENSE-2.0
  #
  # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  # MERCHANTABLITY OR NON-INFRINGEMENT.
  # See the Apache 2 License for the specific language governing permissions and
  # limitations under the License.
  
  # Generated Nnet prototype, to be initialized by 'nnet-initialize'.
  
  from __future__ import division
  from __future__ import print_function
  import math, random, sys, re
  
  ###
  ### Parse options
  ###
  from optparse import OptionParser
  usage="%prog [options] <feat-dim> <num-leaves> <num-hid-layers> <num-hid-neurons> >nnet-proto-file"
  parser = OptionParser(usage)
  
  # Softmax related,
  parser.add_option('--no-softmax', dest='with_softmax',
                     help='Do not put <SoftMax> in the prototype [default: %default]',
                     default=True, action='store_false');
  parser.add_option('--block-softmax-dims', dest='block_softmax_dims',
                     help='Generate <BlockSoftmax> with dims D1:D2:D3 [default: %default]',
                     default="", type='string');
  # Activation related,
  parser.add_option('--activation-type', dest='activation_type',
                     help='Select type of activation function : (<Sigmoid>|<Tanh>|<ParametricRelu>) [default: %default]',
                     default='<Sigmoid>', type='string');
  parser.add_option('--activation-opts', dest='activation_opts',
                     help='Additional options for protoype of activation function [default: %default]',
                     default='', type='string');
  # Affine-transform related,
  parser.add_option('--hid-bias-mean', dest='hid_bias_mean',
                     help='Set bias for hidden activations [default: %default]',
                     default=-2.0, type='float');
  parser.add_option('--hid-bias-range', dest='hid_bias_range',
                     help='Set bias range for hidden activations (+/- 1/2 range around mean) [default: %default]',
                     default=4.0, type='float');
  parser.add_option('--param-stddev-factor', dest='param_stddev_factor',
                     help='Factor to rescale Normal distriburtion for initalizing weight matrices [default: %default]',
                     default=0.1, type='float');
  parser.add_option('--no-glorot-scaled-stddev', dest='with_glorot',
                     help='Generate normalized weights according to X.Glorot paper, but mapping U->N with same variance (factor sqrt(x/(dim_in+dim_out)))',
                     action='store_false', default=True);
  parser.add_option('--no-smaller-input-weights', dest='smaller_input_weights',
                     help='Disable 1/12 reduction of stddef in input layer [default: %default]',
                     action='store_false', default=True);
  parser.add_option('--no-bottleneck-trick', dest='bottleneck_trick',
                     help='Disable smaller initial weights and learning rate around bottleneck',
                     action='store_false', default=True);
  parser.add_option('--max-norm', dest='max_norm',
                     help='Max radius of neuron-weights in L2 space (if longer weights get shrinked, not applied to last layer, 0.0 = disable) [default: %default]',
                     default=0.0, type='float');
  parser.add_option('--affine-opts', dest='affine_opts',
                     help='Additional options for protoype of affine tranform [default: %default]',
                     default='', type='string');
  # Topology related,
  parser.add_option('--bottleneck-dim', dest='bottleneck_dim',
                     help='Make bottleneck network with desired bn-dim (0 = no bottleneck) [default: %default]',
                     default=0, type='int');
  parser.add_option('--with-dropout', dest='with_dropout',
                     help='Add <Dropout> after the non-linearity of hidden layer.',
                     action='store_true', default=False);
  parser.add_option('--dropout-opts', dest='dropout_opts',
                     help='Extra options for dropout [default: %default]',
                     default='', type='string');
  
  
  (o,args) = parser.parse_args()
  if len(args) != 4 :
    parser.print_help()
    sys.exit(1)
  
  # A HACK TO PASS MULTI-WORD OPTIONS, WORDS ARE CONNECTED BY UNDERSCORES '_',
  o.activation_opts = o.activation_opts.replace("_"," ")
  o.affine_opts = o.affine_opts.replace("_"," ")
  o.dropout_opts = o.dropout_opts.replace("_"," ")
  
  (feat_dim, num_leaves, num_hid_layers, num_hid_neurons) = [int(i) for i in args];
  ### End parse options
  
  
  # Check
  assert(feat_dim > 0)
  assert(num_leaves > 0)
  assert(num_hid_layers >= 0)
  assert(num_hid_neurons > 0)
  if o.block_softmax_dims:
    assert(sum(map(int, re.split("[,:]", o.block_softmax_dims))) == num_leaves) # posible separators : ',' ':'
  
  # Optionaly scale
  def Glorot(dim1, dim2):
    if o.with_glorot:
      # 35.0 = magic number, gives ~1.0 in inner layers for hid-dim 1024dim,
      return 35.0 * math.sqrt(2.0/(dim1+dim2));
    else:
      return 1.0
  
  
  ###
  ### Print prototype of the network
  ###
  
  # NO HIDDEN LAYER, ADDING BOTTLENECK!
  # No hidden layer while adding bottleneck means:
  # - add bottleneck layer + hidden layer + output layer
  if num_hid_layers == 0 and o.bottleneck_dim != 0:
    assert(o.bottleneck_dim > 0)
    assert(num_hid_layers == 0)
    if o.bottleneck_trick:
      # 25% smaller stddev -> small bottleneck range, 10x smaller learning rate
      print("<LinearTransform> <InputDim> %d <OutputDim> %d <ParamStddev> %f <LearnRateCoef> %f" % \
       (feat_dim, o.bottleneck_dim, \
        (o.param_stddev_factor * Glorot(feat_dim, o.bottleneck_dim) * 0.75 ), 0.1))
      # 25% smaller stddev -> smaller gradient in prev. layer, 10x smaller learning rate for weigts & biases
      print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <LearnRateCoef> %f <BiasLearnRateCoef> %f <MaxNorm> %f" % \
       (o.bottleneck_dim, num_hid_neurons, o.hid_bias_mean, o.hid_bias_range, \
        (o.param_stddev_factor * Glorot(o.bottleneck_dim, num_hid_neurons) * 0.75 ), 0.1, 0.1, o.max_norm))
    else:
      print("<LinearTransform> <InputDim> %d <OutputDim> %d <ParamStddev> %f" % \
       (feat_dim, o.bottleneck_dim, \
        (o.param_stddev_factor * Glorot(feat_dim, o.bottleneck_dim))))
      print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <MaxNorm> %f" % \
       (o.bottleneck_dim, num_hid_neurons, o.hid_bias_mean, o.hid_bias_range, \
        (o.param_stddev_factor * Glorot(o.bottleneck_dim, num_hid_neurons)), o.max_norm))
    print("%s <InputDim> %d <OutputDim> %d %s" % (o.activation_type, num_hid_neurons, num_hid_neurons, o.activation_opts)) # Non-linearity
    # Last AffineTransform (10x smaller learning rate on bias)
    print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <LearnRateCoef> %f <BiasLearnRateCoef> %f" % \
     (num_hid_neurons, num_leaves, 0.0, 0.0, \
      (o.param_stddev_factor * Glorot(num_hid_neurons, num_leaves)), 1.0, 0.1))
    # Optionaly append softmax
    if o.with_softmax:
      if o.block_softmax_dims == "":
        print("<Softmax> <InputDim> %d <OutputDim> %d" % (num_leaves, num_leaves))
      else:
        print("<BlockSoftmax> <InputDim> %d <OutputDim> %d <BlockDims> %s" % (num_leaves, num_leaves, o.block_softmax_dims))
    print("</NnetProto>")
    # We are done!
    sys.exit(0)
  
  # NO HIDDEN LAYERS!
  # Add only last layer (logistic regression)
  if num_hid_layers == 0:
    print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f" % \
          (feat_dim, num_leaves, 0.0, 0.0, (o.param_stddev_factor * Glorot(feat_dim, num_leaves))))
    if o.with_softmax:
      if o.block_softmax_dims == "":
        print("<Softmax> <InputDim> %d <OutputDim> %d" % (num_leaves, num_leaves))
      else:
        print("<BlockSoftmax> <InputDim> %d <OutputDim> %d <BlockDims> %s" % (num_leaves, num_leaves, o.block_softmax_dims))
    print("</NnetProto>")
    # We are done!
    sys.exit(0)
  
  
  # THE USUAL DNN PROTOTYPE STARTS HERE!
  # Assuming we have >0 hidden layers,
  assert(num_hid_layers > 0)
  
  # Begin the prototype,
  # First AffineTranform,
  print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <MaxNorm> %f %s" % \
        (feat_dim, num_hid_neurons, o.hid_bias_mean, o.hid_bias_range, \
         (o.param_stddev_factor * Glorot(feat_dim, num_hid_neurons) * \
          (math.sqrt(1.0/12.0) if o.smaller_input_weights else 1.0)), o.max_norm, o.affine_opts))
        # Note.: compensating dynamic range mismatch between input features and Sigmoid-hidden layers,
        # i.e. mapping the std-dev of N(0,1) (input features) to std-dev of U[0,1] (sigmoid-outputs).
        # This is done by multiplying with stddev(U[0,1]) = sqrt(1/12).
        # The stddev of weights is consequently reduced with scale 0.29,
  print("%s <InputDim> %d <OutputDim> %d %s" % (o.activation_type, num_hid_neurons, num_hid_neurons, o.activation_opts))
  if o.with_dropout:
    print("<Dropout> <InputDim> %d <OutputDim> %d %s" % (num_hid_neurons, num_hid_neurons, o.dropout_opts))
  
  
  # Internal AffineTransforms,
  for i in range(num_hid_layers-1):
    print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <MaxNorm> %f %s" % \
          (num_hid_neurons, num_hid_neurons, o.hid_bias_mean, o.hid_bias_range, \
           (o.param_stddev_factor * Glorot(num_hid_neurons, num_hid_neurons)), o.max_norm, o.affine_opts))
    print("%s <InputDim> %d <OutputDim> %d %s" % (o.activation_type, num_hid_neurons, num_hid_neurons, o.activation_opts))
    if o.with_dropout:
      print("<Dropout> <InputDim> %d <OutputDim> %d %s" % (num_hid_neurons, num_hid_neurons, o.dropout_opts))
  
  # Optionaly add bottleneck,
  if o.bottleneck_dim != 0:
    assert(o.bottleneck_dim > 0)
    if o.bottleneck_trick:
      # 25% smaller stddev -> small bottleneck range, 10x smaller learning rate
      print("<LinearTransform> <InputDim> %d <OutputDim> %d <ParamStddev> %f <LearnRateCoef> %f" % \
       (num_hid_neurons, o.bottleneck_dim, \
        (o.param_stddev_factor * Glorot(num_hid_neurons, o.bottleneck_dim) * 0.75 ), 0.1))
      # 25% smaller stddev -> smaller gradient in prev. layer, 10x smaller learning rate for weigts & biases
      print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <LearnRateCoef> %f <BiasLearnRateCoef> %f <MaxNorm> %f %s" % \
       (o.bottleneck_dim, num_hid_neurons, o.hid_bias_mean, o.hid_bias_range, \
        (o.param_stddev_factor * Glorot(o.bottleneck_dim, num_hid_neurons) * 0.75 ), 0.1, 0.1, o.max_norm, o.affine_opts))
    else:
      # Same learninig-rate and stddev-formula everywhere,
      print("<LinearTransform> <InputDim> %d <OutputDim> %d <ParamStddev> %f" % \
       (num_hid_neurons, o.bottleneck_dim, \
        (o.param_stddev_factor * Glorot(num_hid_neurons, o.bottleneck_dim))))
      print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <MaxNorm> %f %s" % \
       (o.bottleneck_dim, num_hid_neurons, o.hid_bias_mean, o.hid_bias_range, \
        (o.param_stddev_factor * Glorot(o.bottleneck_dim, num_hid_neurons)), o.max_norm, o.affine_opts))
    print("%s <InputDim> %d <OutputDim> %d %s" % (o.activation_type, num_hid_neurons, num_hid_neurons, o.activation_opts))
    if o.with_dropout:
      print("<Dropout> <InputDim> %d <OutputDim> %d %s" % (num_hid_neurons, num_hid_neurons, o.dropout_opts))
  
  # Last AffineTransform (10x smaller learning rate on bias)
  print("<AffineTransform> <InputDim> %d <OutputDim> %d <BiasMean> %f <BiasRange> %f <ParamStddev> %f <LearnRateCoef> %f <BiasLearnRateCoef> %f" % \
        (num_hid_neurons, num_leaves, 0.0, 0.0, \
         (o.param_stddev_factor * Glorot(num_hid_neurons, num_leaves)), 1.0, 0.1))
  
  # Optionaly append softmax
  if o.with_softmax:
    if o.block_softmax_dims == "":
      print("<Softmax> <InputDim> %d <OutputDim> %d" % (num_leaves, num_leaves))
    else:
      print("<BlockSoftmax> <InputDim> %d <OutputDim> %d <BlockDims> %s" % (num_leaves, num_leaves, o.block_softmax_dims))
  
  # We are done!
  sys.exit(0)