Blame view
egs/yomdle_korean/v1/local/chain/run_e2e_cnn.sh
5.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
#!/bin/bash # Copyright 2017 Hossein Hadian # This script does end2end chain training (i.e. from scratch) # local/chain/compare_wer.sh exp/chain/e2e_cnn_1a/ # System e2e_cnn_1a # score_basic score_nomalized # WER 13.64 10.6 # WER (rescored) 13.13 10.2 # CER 2.99 3.0 # CER (rescored) 2.88 2.9 # Final train prob 0.0113 # Final valid prob 0.0152 # steps/info/chain_dir_info.pl exp/chain/e2e_cnn_1a # exp/chain/e2e_cnn_1a: num-iters=48 nj=5..8 num-params=3.0M dim=40->352 combine=0.047->0.047 (over 2) logprob:train/valid[31,47,final]=(0.002,0.008,0.011/0.008,0.013,0.015) set -e # configs for 'chain' stage=0 nj=30 train_stage=-10 get_egs_stage=-10 affix=1a # training options tdnn_dim=450 minibatch_size=150=64,32/300=32,16/600=16,8/1200=8,4 cmvn_opts="--norm-means=false --norm-vars=false" train_set=train lang_decode=data/lang decode_e2e=true # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi lang=data/lang_e2e treedir=exp/chain/e2e_monotree # it's actually just a trivial tree (no tree building) dir=exp/chain/e2e_cnn_${affix} if [ $stage -le 0 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 1 ]; then steps/nnet3/chain/e2e/prepare_e2e.sh --nj $nj --cmd "$cmd" \ --shared-phones true \ --type mono \ data/$train_set $lang $treedir $cmd $treedir/log/make_phone_lm.log \ cat data/$train_set/text \| \ steps/nnet3/chain/e2e/text_to_phones.py data/lang \| \ utils/sym2int.pl -f 2- data/lang/phones.txt \| \ chain-est-phone-lm --num-extra-lm-states=500 \ ark:- $treedir/phone_lm.fst fi if [ $stage -le 2 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') cnn_opts="l2-regularize=0.075" tdnn_opts="l2-regularize=0.075" output_opts="l2-regularize=0.1" common1="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=36" common2="$cnn_opts required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=70" common3="$cnn_opts required-time-offsets= height-offsets=-1,0,1 num-filters-out=70" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=40 name=input conv-relu-batchnorm-layer name=cnn1 height-in=40 height-out=40 time-offsets=-3,-2,-1,0,1,2,3 $common1 conv-relu-batchnorm-layer name=cnn2 height-in=40 height-out=20 time-offsets=-2,-1,0,1,2 $common1 height-subsample-out=2 conv-relu-batchnorm-layer name=cnn3 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2 conv-relu-batchnorm-layer name=cnn4 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2 conv-relu-batchnorm-layer name=cnn5 height-in=20 height-out=10 time-offsets=-4,-2,0,2,4 $common2 height-subsample-out=2 conv-relu-batchnorm-layer name=cnn6 height-in=10 height-out=10 time-offsets=-4,0,4 $common3 conv-relu-batchnorm-layer name=cnn7 height-in=10 height-out=10 time-offsets=-4,0,4 $common3 relu-batchnorm-layer name=tdnn1 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts relu-batchnorm-layer name=tdnn2 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts relu-batchnorm-layer name=tdnn3 input=Append(-4,0,4) dim=$tdnn_dim $tdnn_opts ## adding the layers for chain branch relu-batchnorm-layer name=prefinal-chain dim=$tdnn_dim target-rms=0.5 $output_opts output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5 $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs fi if [ $stage -le 3 ]; then steps/nnet3/chain/e2e/train_e2e.py --stage $train_stage \ --cmd "$cmd" \ --feat.cmvn-opts "$cmvn_opts" \ --chain.leaky-hmm-coefficient 0.1 \ --chain.apply-deriv-weights true \ --egs.stage $get_egs_stage \ --egs.opts "--num_egs_diagnostic 100 --num_utts_subset 400" \ --chain.frame-subsampling-factor 4 \ --chain.alignment-subsampling-factor 4 \ --trainer.add-option="--optimization.memory-compression-level=2" \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs 3 \ --trainer.optimization.momentum 0 \ --trainer.optimization.num-jobs-initial 5 \ --trainer.optimization.num-jobs-final 8 \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.optimization.shrink-value 1.0 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs true \ --feat-dir data/${train_set} \ --tree-dir $treedir \ --dir $dir || exit 1; fi |