Blame view
src/fgmmbin/fgmm-global-get-frame-likes.cc
4.55 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
// fgmmbin/fgmm-global-get-frame-likes.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "Print out per-frame log-likelihoods for each utterance, as an archive " "of vectors of floats. If --average=true, prints out the average per-frame " "log-likelihood for each utterance, as a single float. " "Usage: fgmm-global-get-frame-likes [options] <model-in> <feature-rspecifier> " "<likes-out-wspecifier> " "e.g.: fgmm-global-get-frame-likes 1.mdl scp:train.scp ark:1.likes "; ParseOptions po(usage); bool average = false; std::string gselect_rspecifier; po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects " "to limit the #Gaussians accessed on each frame."); po.Register("average", &average, "If true, print out the average per-frame " "log-likelihood as a single float per utterance."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), likes_wspecifier = po.GetArg(3); FullGmm fgmm; { bool binary_read; Input ki(model_filename, &binary_read); fgmm.Read(ki.Stream(), binary_read); } double tot_like = 0.0, tot_frames = 0.0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); BaseFloatVectorWriter likes_writer(average ? "" : likes_wspecifier); BaseFloatWriter average_likes_writer(average ? likes_wspecifier : ""); int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); const Matrix<BaseFloat> &mat = feature_reader.Value(); int32 file_frames = mat.NumRows(); Vector<BaseFloat> likes(file_frames); if (gselect_rspecifier != "") { if (!gselect_reader.HasKey(key)) { KALDI_WARN << "No gselect information for utterance " << key; num_err++; continue; } const std::vector<std::vector<int32> > &gselect = gselect_reader.Value(key); if (gselect.size() != static_cast<size_t>(file_frames)) { KALDI_WARN << "gselect information for utterance " << key << " has wrong size " << gselect.size() << " vs. " << file_frames; num_err++; continue; } for (int32 i = 0; i < file_frames; i++) { SubVector<BaseFloat> data(mat, i); const std::vector<int32> &this_gselect = gselect[i]; int32 gselect_size = this_gselect.size(); KALDI_ASSERT(gselect_size > 0); Vector<BaseFloat> loglikes; fgmm.LogLikelihoodsPreselect(data, this_gselect, &loglikes); likes(i) = loglikes.LogSumExp(); } } else { // no gselect.. for (int32 i = 0; i < file_frames; i++) likes(i) = fgmm.LogLikelihood(mat.Row(i)); } tot_like += likes.Sum(); tot_frames += file_frames; if (average) average_likes_writer.Write(key, likes.Sum() / file_frames); else likes_writer.Write(key, likes); num_done++; } KALDI_LOG << "Done " << num_done << " files; " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per " << "frame = " << (tot_like/tot_frames) << " over " << tot_frames << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |