Blame view

src/fgmmbin/fgmm-global-get-frame-likes.cc 4.55 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  // fgmmbin/fgmm-global-get-frame-likes.cc
  
  // Copyright 2009-2011  Microsoft Corporation;  Saarland University
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/model-common.h"
  #include "gmm/full-gmm.h"
  #include "gmm/diag-gmm.h"
  #include "gmm/mle-full-gmm.h"
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
  
      const char *usage =
          "Print out per-frame log-likelihoods for each utterance, as an archive
  "
          "of vectors of floats.  If --average=true, prints out the average per-frame
  "
          "log-likelihood for each utterance, as a single float.
  "
          "Usage:  fgmm-global-get-frame-likes [options] <model-in> <feature-rspecifier> "
          "<likes-out-wspecifier>
  "
          "e.g.: fgmm-global-get-frame-likes 1.mdl scp:train.scp ark:1.likes
  ";
  
      ParseOptions po(usage);
      bool average = false;
      std::string gselect_rspecifier;
      po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects "
                  "to limit the #Gaussians accessed on each frame.");
      po.Register("average", &average, "If true, print out the average per-frame "
                  "log-likelihood as a single float per utterance.");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_filename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          likes_wspecifier = po.GetArg(3);
  
      FullGmm fgmm;
      {
        bool binary_read;
        Input ki(model_filename, &binary_read);
        fgmm.Read(ki.Stream(), binary_read);
      }
  
      double tot_like = 0.0, tot_frames = 0.0;
  
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
      RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
      BaseFloatVectorWriter likes_writer(average ? "" : likes_wspecifier);
      BaseFloatWriter average_likes_writer(average ? likes_wspecifier : "");
      int32 num_done = 0, num_err = 0;
  
      for (; !feature_reader.Done(); feature_reader.Next()) {
        std::string key = feature_reader.Key();
        const Matrix<BaseFloat> &mat = feature_reader.Value();
        int32 file_frames = mat.NumRows();
        Vector<BaseFloat> likes(file_frames);
        
        if (gselect_rspecifier != "") {
          if (!gselect_reader.HasKey(key)) {
            KALDI_WARN << "No gselect information for utterance " << key;
            num_err++;
            continue;
          }
          const std::vector<std::vector<int32> > &gselect =
              gselect_reader.Value(key);
          if (gselect.size() != static_cast<size_t>(file_frames)) {
            KALDI_WARN << "gselect information for utterance " << key
                       << " has wrong size " << gselect.size() << " vs. "
                       << file_frames;
            num_err++;
            continue;
          }
          
          for (int32 i = 0; i < file_frames; i++) {
            SubVector<BaseFloat> data(mat, i);
            const std::vector<int32> &this_gselect = gselect[i];
            int32 gselect_size = this_gselect.size();
            KALDI_ASSERT(gselect_size > 0);
            Vector<BaseFloat> loglikes;
            fgmm.LogLikelihoodsPreselect(data, this_gselect, &loglikes);
            likes(i) = loglikes.LogSumExp();
          }
        } else { // no gselect..
          for (int32 i = 0; i < file_frames; i++)
            likes(i) = fgmm.LogLikelihood(mat.Row(i));
        }
  
        tot_like += likes.Sum();
        tot_frames += file_frames;
        if (average)
          average_likes_writer.Write(key, likes.Sum() / file_frames);
        else
          likes_writer.Write(key, likes);
        num_done++;
      }
      KALDI_LOG << "Done " << num_done << " files; " << num_err
                << " with errors.";
      KALDI_LOG << "Overall likelihood per "
                << "frame = " << (tot_like/tot_frames) << " over " << tot_frames
                << " frames.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }