Blame view
src/matrix/optimization.h
9.85 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
// matrix/optimization.h // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. // // (*) incorporates, with permission, FFT code from his book // "Signal Processing with Lapped Transforms", Artech, 1992. #ifndef KALDI_MATRIX_OPTIMIZATION_H_ #define KALDI_MATRIX_OPTIMIZATION_H_ #include "matrix/kaldi-vector.h" #include "matrix/kaldi-matrix.h" namespace kaldi { /// @addtogroup matrix_optimization /// @{ struct LinearCgdOptions { int32 max_iters; // Maximum number of iters (if >= 0). BaseFloat max_error; // Maximum 2-norm of the residual A x - b (convergence // test) // Every time the residual 2-norm decreases by this recompute_residual_factor // since the last time it was computed from scratch, recompute it from // scratch. This helps to keep the computed residual accurate even in the // presence of roundoff. BaseFloat recompute_residual_factor; LinearCgdOptions(): max_iters(-1), max_error(0.0), recompute_residual_factor(0.01) { } }; /* This function uses linear conjugate gradient descent to approximately solve the system A x = b. The value of x at entry corresponds to the initial guess of x. The algorithm continues until the number of iterations equals b.Dim(), or until the 2-norm of (A x - b) is <= max_error, or until the number of iterations equals max_iter, whichever happens sooner. It is a requirement that A be positive definite. It returns the number of iterations that were actually executed (this is useful for testing purposes). */ template<typename Real> int32 LinearCgd(const LinearCgdOptions &opts, const SpMatrix<Real> &A, const VectorBase<Real> &b, VectorBase<Real> *x); /** This is an implementation of L-BFGS. It pushes responsibility for determining when to stop, onto the user. There is no call-back here: everything is done via calls to the class itself (see the example in matrix-lib-test.cc). This does not implement constrained L-BFGS, but it will handle constrained problems correctly as long as the function approaches +infinity (or -infinity for maximization problems) when it gets close to the bound of the constraint. In these types of problems, you just let the function value be +infinity for minimization problems, or -infinity for maximization problems, outside these bounds). */ struct LbfgsOptions { bool minimize; // if true, we're minimizing, else maximizing. int m; // m is the number of stored vectors L-BFGS keeps. float first_step_learning_rate; // The very first step of L-BFGS is // like gradient descent. If you want to configure the size of that step, // you can do it using this variable. float first_step_length; // If this variable is >0.0, it overrides // first_step_learning_rate; on the first step we choose an approximate // Hessian that is the multiple of the identity that would generate this // step-length, or 1.0 if the gradient is zero. float first_step_impr; // If this variable is >0.0, it overrides // first_step_learning_rate; on the first step we choose an approximate // Hessian that is the multiple of the identity that would generate this // amount of objective function improvement (assuming the "real" objf // was linear). float c1; // A constant in Armijo rule = Wolfe condition i) float c2; // A constant in Wolfe condition ii) float d; // An amount > 1.0 (default 2.0) that we initially multiply or // divide the step length by, in the line search. int max_line_search_iters; // after this many iters we restart L-BFGS. int avg_step_length; // number of iters to avg step length over, in // RecentStepLength(). LbfgsOptions (bool minimize = true): minimize(minimize), m(10), first_step_learning_rate(1.0), first_step_length(0.0), first_step_impr(0.0), c1(1.0e-04), c2(0.9), d(2.0), max_line_search_iters(50), avg_step_length(4) { } }; template<typename Real> class OptimizeLbfgs { public: /// Initializer takes the starting value of x. OptimizeLbfgs(const VectorBase<Real> &x, const LbfgsOptions &opts); /// This returns the value of the variable x that has the best objective /// function so far, and the corresponding objective function value if /// requested. This would typically be called only at the end. const VectorBase<Real>& GetValue(Real *objf_value = NULL) const; /// This returns the value at which the function wants us /// to compute the objective function and gradient. const VectorBase<Real>& GetProposedValue() const { return new_x_; } /// Returns the average magnitude of the last n steps (but not /// more than the number we have stored). Before we have taken /// any steps, returns +infinity. Note: if the most recent /// step length was 0, it returns 0, regardless of the other /// step lengths. This makes it suitable as a convergence test /// (else we'd generate NaN's). Real RecentStepLength() const; /// The user calls this function to provide the class with the /// function and gradient info at the point GetProposedValue(). /// If this point is outside the constraints you can set function_value /// to {+infinity,-infinity} for {minimization,maximization} problems. /// In this case the gradient, and also the second derivative (if you call /// the second overloaded version of this function) will be ignored. void DoStep(Real function_value, const VectorBase<Real> &gradient); /// The user can call this version of DoStep() if it is desired to set some /// kind of approximate Hessian on this iteration. Note: it is a prerequisite /// that diag_approx_2nd_deriv must be strictly positive (minimizing), or /// negative (maximizing). void DoStep(Real function_value, const VectorBase<Real> &gradient, const VectorBase<Real> &diag_approx_2nd_deriv); private: KALDI_DISALLOW_COPY_AND_ASSIGN(OptimizeLbfgs); // The following variable says what stage of the computation we're at. // Refer to Algorithm 7.5 (L-BFGS) of Nodecdal & Wright, "Numerical // Optimization", 2nd edition. // kBeforeStep means we're about to do /// "compute p_k <-- - H_k \delta f_k" (i.e. Algorithm 7.4). // kWithinStep means we're at some point within line search; note // that line search is iterative so we can stay in this state more // than one time on each iteration. enum ComputationState { kBeforeStep, kWithinStep, // This means we're within the step-size computation, and // have not yet done the 1st function evaluation. }; inline MatrixIndexT Dim() { return x_.Dim(); } inline MatrixIndexT M() { return opts_.m; } SubVector<Real> Y(MatrixIndexT i) { return SubVector<Real>(data_, (i % M()) * 2); // vector y_i } SubVector<Real> S(MatrixIndexT i) { return SubVector<Real>(data_, (i % M()) * 2 + 1); // vector s_i } // The following are subroutines within DoStep(): bool AcceptStep(Real function_value, const VectorBase<Real> &gradient); void Restart(const VectorBase<Real> &x, Real function_value, const VectorBase<Real> &gradient); void ComputeNewDirection(Real function_value, const VectorBase<Real> &gradient); void ComputeHifNeeded(const VectorBase<Real> &gradient); void StepSizeIteration(Real function_value, const VectorBase<Real> &gradient); void RecordStepLength(Real s); LbfgsOptions opts_; SignedMatrixIndexT k_; // Iteration number, starts from zero. Gets set back to zero // when we restart. ComputationState computation_state_; bool H_was_set_; // True if the user specified H_; if false, // we'll use a heuristic to estimate it. Vector<Real> x_; // current x. Vector<Real> new_x_; // the x proposed in the line search. Vector<Real> best_x_; // the x with the best objective function so far // (either the same as x_ or something in the current line search.) Vector<Real> deriv_; // The most recently evaluated derivative-- at x_k. Vector<Real> temp_; Real f_; // The function evaluated at x_k. Real best_f_; // the best objective function so far. Real d_; // a number d > 1.0, but during an iteration we may decrease this, when // we switch between armijo and wolfe failures. int num_wolfe_i_failures_; // the num times we decreased step size. int num_wolfe_ii_failures_; // the num times we increased step size. enum { kWolfeI, kWolfeII, kNone } last_failure_type_; // last type of step-search // failure on this iter. Vector<Real> H_; // Current inverse-Hessian estimate. May be computed by this class itself, // or provided by user using 2nd form of SetGradientInfo(). Matrix<Real> data_; // dimension (m*2) x dim. Even rows store // gradients y_i, odd rows store steps s_i. Vector<Real> rho_; // dimension m; rho_(m) = 1/(y_m^T s_m), Eq. 7.17. std::vector<Real> step_lengths_; // The step sizes we took on the last // (up to m) iterations; these are not stored in a rotating buffer but // are shifted by one each time (this is more convenient when we // restart, as we keep this info past restarting). }; /// @} } // end namespace kaldi #endif |