Blame view

src/rnnlm/rnnlm-example-utils.cc 30.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  // rnnlm/rnnlm-example-utils.cc
  
  // Copyright 2017  Daniel Povey
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <numeric>
  #include "rnnlm/rnnlm-example-utils.h"
  
  namespace kaldi {
  namespace rnnlm {
  
  void GetRnnlmComputationRequest(
      const RnnlmExample &minibatch,
      bool need_model_derivative,
      bool need_input_derivative,
      bool store_component_stats,
      nnet3::ComputationRequest *request) {
  
    request->inputs.clear();
    request->inputs.resize(1);
    request->outputs.clear();
    request->outputs.resize(1);
    request->need_model_derivative = need_model_derivative;
    request->store_component_stats = store_component_stats;
  
    nnet3::IoSpecification &input_spec = request->inputs[0],
        &output_spec = request->outputs[0];
    input_spec.name = "input";
    output_spec.name = "output";
  
    int32 num_chunks = minibatch.num_chunks,
        chunk_length = minibatch.chunk_length;
    input_spec.indexes.resize(num_chunks * chunk_length);
    KALDI_ASSERT(num_chunks > 0 && chunk_length > 0);
    nnet3::Index *cur_index = &(input_spec.indexes[0]);
    for (int32 t = 0; t < chunk_length; t++) {
      for (int32 n = 0; n < num_chunks; n++) {
        cur_index->t = t;
        cur_index->n = n;
        cur_index++;
      }
    }
    output_spec.indexes = input_spec.indexes;
    output_spec.has_deriv = (need_model_derivative ||
                             need_input_derivative);
    input_spec.has_deriv = need_input_derivative;
  }
  
  
  void RnnlmExampleDerived::Swap(RnnlmExampleDerived *other) {
    cu_input_words.Swap(&other->cu_input_words);
    cu_output_words.Swap(&other->cu_output_words);
    cu_sampled_words.Swap(&other->cu_sampled_words);
    output_words_smat.Swap(&other->output_words_smat);
    input_words_smat.Swap(&other->input_words_smat);
  }
  
  // This is called from ProcessRnnlmOutput() when we are doing importance
  // sampling.
  static void ProcessRnnlmOutputSampling(
      const RnnlmObjectiveOptions &objective_config,
      const RnnlmExample &minibatch,
      const RnnlmExampleDerived &derived,
      const CuMatrixBase<BaseFloat> &word_embedding,
      const CuMatrixBase<BaseFloat> &nnet_output,
      CuMatrixBase<BaseFloat> *word_embedding_deriv,
      CuMatrixBase<BaseFloat> *nnet_output_deriv,
      BaseFloat *weight,
      BaseFloat *objf_num,
      BaseFloat *objf_den,
      BaseFloat *objf_den_exact) {
    KALDI_ASSERT(weight != NULL && objf_den != NULL);  // Others are optional.
  
    // In the case where minibatch.sample_group_size == 1, meaning for each 't' value we
    // sample separately, num_sample_groups would equal the chunk_length and
    // rows_per_sample would equal minibatch.num_chunks.  When trying to
    // understand this code, initially assume sample_group_size == 1.
    // For sample_group_size > 1, it means that for we use the same group
    // of sampled words for a number of time steps.
    int32 num_sample_groups = minibatch.chunk_length / minibatch.sample_group_size,
        rows_per_group = minibatch.num_chunks * minibatch.sample_group_size,
        samples_per_group = minibatch.num_samples,
        embedding_dim = word_embedding.NumCols();
    KALDI_ASSERT(nnet_output.NumRows() == num_sample_groups * rows_per_group);
  
    CuMatrix<BaseFloat> word_logprobs(rows_per_group,
                                      samples_per_group);
    // 'sampled_word_embedding' will contain those rows of 'word_embedding' that
    // pertain to the words sampled in this group.
    CuMatrix<BaseFloat> sampled_word_embedding(samples_per_group,
                                               embedding_dim,
                                               kUndefined);
  
    CuVector<BaseFloat> output_word_logprobs(rows_per_group * num_sample_groups,
                                             kUndefined);
  
    if (weight) *weight = minibatch.output_weights.Sum();
    if (objf_den) *objf_den = 0.0;
    // note: we don't update objf_den_exact in the loop, it's not applicable in
    // the sampling case.
    if (objf_den_exact) *objf_den_exact = 0.0;
  
    // caution: the 't' here is only the real 't' value if sample_group_size == 1.
    for (int32 t = 0; t < num_sample_groups; t++) {
  
      CuSubArray<int32> sampled_words_part(derived.cu_sampled_words,
                                           t * samples_per_group,
                                           samples_per_group),
          output_words_part(derived.cu_output_words,
                            t * rows_per_group,
                            rows_per_group);
      CuSubVector<BaseFloat> output_weights_part(minibatch.output_weights,
                                                 t * rows_per_group,
                                                 rows_per_group),
          sample_inv_probs_part(minibatch.sample_inv_probs,
                                t * samples_per_group,
                                samples_per_group);
  
      sampled_word_embedding.CopyRows(word_embedding,
                                      sampled_words_part);
  
      CuSubMatrix<BaseFloat> nnet_output_part(nnet_output,
                                              rows_per_group * t, rows_per_group,
                                              0, nnet_output.NumCols());
      word_logprobs.AddMatMat(1.0, nnet_output_part, kNoTrans,
                              sampled_word_embedding, kTrans, 0.0);
  
  
      // OK: now we have the log-probs for this group of words we sampled.
      // Get the logprobs of the correct words.
      if (objf_num != NULL) {
        CuSubVector<BaseFloat> this_output_word_logprobs(
            output_word_logprobs,
            t * rows_per_group, rows_per_group);
        this_output_word_logprobs.CopyElements(word_logprobs, kNoTrans,
                                               output_words_part);
      }
  
  
      // In preparation for computing the denominator objf contribution, change 'word_logprobs'
      // to contain q = (l < 0 ? exp(l) : l + 1.0), instead of the unnormalized
      // logprob l.  For most purposes you can think of this as behaving like
      // exp(l); it just has better behavior at the beginning of training when there
      // is a danger of divergence.  We can prove that the objective is a closer
      // bound on the true (log-probability-based) objective than if we used a
      // simple exp.  note: all this bound stuff is really geared towards the
      // sampling case, there is really no point in it if we're not doing sampling
      // and some of these code paths will only be used in test code.
      word_logprobs.ApplyExpSpecial();
  
      // The denominator part of this objective is something like:
      // - \sum_i \sum_w output_weight(i) * q(i, w) * sample_inv_prob(w).
      *objf_den +=  -VecMatVec(output_weights_part, word_logprobs,
                               sample_inv_probs_part);
  
  
      // The derivative of the function q(l) = (l < 0 ? exp(l) : l + 1.0)
      // equals (l < 0 ? exp(l) : 1.0), which we can compute by
      // applying a ceiling to q at 1.0.
      word_logprobs.ApplyCeiling(1.0);
  
      // the inverses of the sampling probabilities appear as a factor
      // in the deriviative of the objf w.r.t. the words' logprobs
      // (which is what we're computing now).
      word_logprobs.MulColsVec(sample_inv_probs_part);
  
      if (objective_config.den_term_limit != 0.0) {
        // If it's nonzero then check that it's negative, and not too close to zero,
        // which would likely cause failure to converge.  The default is 10.0.
        KALDI_ASSERT(objective_config.den_term_limit < -0.5);
        BaseFloat limit = objective_config.den_term_limit;
        if (weight != NULL && objf_den != NULL && *weight > 0 &&
            (*objf_den / *weight) < limit) {
          // note: both things being divided below are negative, and
          // 'scale' will be between zero and one.
          BaseFloat scale = limit / (*objf_den / *weight);
          // We scale the denominator part of the objective down by the inverse of
          // the factor by which the denominator part of the objective exceeds the
          // limit.  This point in the code should only be reached on the first few
          // iterations of training, or if there is some kind of instability,
          // because the (*objf_den / *weight) will usually be close to zero,
          // e.g. -0.01, while 'limit' is expected to be larger, like -10.0.
          word_logprobs.Scale(scale);
        }
      }
  
  
      // This adds -1.0 to the elements of 'word_logprobs' corresponding
      // to the output words.  This array 'word_logprobs' is going to
      // represent the negative of the derivative of the objf w.r.t.
      // the original 'word_logprobs' array.  The negative sign just
      // helps us avoid one operation.
      word_logprobs.AddToElements(-1.0, output_words_part);
  
      // The factor from 'output_weights' applies to both the denominator and
      // numerator terms in the derivative, so we waited to multiply by it until
      // after we'd included the numerator-related term.
      word_logprobs.MulRowsVec(output_weights_part);
  
      // OK, at this point, word_logprobs contains the negative of the derivative
      // of the objf w.r.t. the original 'word_logprobs' array.
      // The two if-blocks below are doing the backprop for the
      // statement:
      // word_logprobs.AddMat(1.0, nnet_output_part, kNoTrans,
      //                      sampled_word_embedding, kTrans, 0.0);
      if (nnet_output_deriv) {
        CuSubMatrix<BaseFloat> nnet_output_deriv_part(
            *nnet_output_deriv, rows_per_group * t, rows_per_group,
            0, nnet_output.NumCols());
        nnet_output_deriv_part.AddMatMat(-1.0, word_logprobs, kNoTrans,
                                         sampled_word_embedding, kNoTrans, 1.0);
      }
      if (word_embedding_deriv) {
        // We'll temporarily use 'sampled_word_embedding' to contain
        // the derivative of the objf w.r.t 'sampled_word_embedding', and
        // propagate it from there back to 'word_embedding_deriv'.
        sampled_word_embedding.AddMatMat(-1.0, word_logprobs, kTrans,
                                         nnet_output_part, kNoTrans, 0.0);
        sampled_word_embedding.AddToRows(1.0, sampled_words_part,
                                         word_embedding_deriv);
  
      }
    }
    if (objf_num)
      *objf_num = VecVec(output_word_logprobs, minibatch.output_weights);
    if (objf_den)
      *objf_den += minibatch.output_weights.Sum();
  }
  
  // This is called from ProcessRnnlmOutput() when we are not doing importance
  // sampling.
  static void ProcessRnnlmOutputNoSampling(
      const RnnlmObjectiveOptions &objective_config,
      const RnnlmExample &minibatch,
      const RnnlmExampleDerived &derived,
      const CuMatrixBase<BaseFloat> &word_embedding,
      const CuMatrixBase<BaseFloat> &nnet_output,
      CuMatrixBase<BaseFloat> *word_embedding_deriv,
      CuMatrixBase<BaseFloat> *nnet_output_deriv,
      BaseFloat *weight,
      BaseFloat *objf_num,
      BaseFloat *objf_den,
      BaseFloat *objf_den_exact) {
    KALDI_ASSERT(weight != NULL && objf_den != NULL);  // Others are optional.
  
    int32 embedding_dim = word_embedding.NumCols();
    int32 num_words = word_embedding.NumRows();
  
  
  
    // 'word_logprobs' contains the unnormalized logprobs of the words.
    CuMatrix<BaseFloat> word_logprobs(nnet_output.NumRows(),
                                      num_words);
    word_logprobs.AddMatMat(1.0, nnet_output, kNoTrans,
                            word_embedding, kTrans, 0.0);
  
    *weight = minibatch.output_weights.Sum();
  
    if (objf_num) {
      *objf_num = TraceMatSmat(word_logprobs,
                               derived.output_words_smat, kTrans);
    }
    if (objf_den_exact) {
      // This code is not as optimized as it could be, but we don't take this
      // branch in training so efficiency doesn't matter as much.
      // The 'exact' denominator is the log of the sum of the
      // words' probs.
  
      // the -1 is to remove epsilon.
      CuMatrix<BaseFloat> word_probs(nnet_output.NumRows(),
                                     num_words - 1, kUndefined);
      word_probs.CopyFromMat(word_logprobs.ColRange(1, num_words - 1));
      word_probs.ApplyExpLimited(-80.0, 80.0);
      CuVector<BaseFloat> row_sums(nnet_output.NumRows());
      row_sums.AddColSumMat(1.0, word_probs, 0.0);
      row_sums.ApplyLog();
      BaseFloat ans = -VecVec(row_sums, minibatch.output_weights);
      *objf_den_exact =  ans;
      if (fabs(ans) > 1.0 * nnet_output.NumRows()) {
        KALDI_WARN << "Big den objf "  << ans;
      }
    }
  
    // In preparation for computing the denominator objf, change 'word_logprobs'
    // to contain q = (l < 0 ? exp(l) : l + 1.0), instead of the unnormalized
    // logprob l.  For most purposes you can think of this as behaving like
    // exp(l); it just has better behavior at the beginning of training when there
    // is a danger of divergence.  We can prove that the objective is a closer
    // bound on the true (log-probability-based) objective than if we used a
    // simple exp.  note: all this bound stuff is really geared towards the
    // sampling case, there is really no point in it if we're not doing sampling
    // and some of these code paths will only be used in test code.
    word_logprobs.ApplyExpSpecial();
  
    { // This block computes *objf_den.
  
      // we call this variable 'q_noeps' because in the math described in
      // rnnlm-example-utils.h it is described as q(i,w), and because we're
      // skipping over the epsilon symbol (which we don't want to include in the
      // sum because it can never be output) by removing the first row.
      CuSubMatrix<BaseFloat> q_noeps(word_logprobs,
                                     0, word_logprobs.NumRows(),
                                     1, num_words - 1);
      // den_term(i) = 1.0 - (\sum_w q(i,w))
      CuVector<BaseFloat> den_term(word_logprobs.NumRows(), kUndefined);
      den_term.Set(1.0);
      den_term.AddColSumMat(-1.0, q_noeps, 1.0);
      // note: objf = \sum_i weight(i) * ( num_term(i) + den_term(i) ),
      // this is the term \sum_i weight(i) * den_term(i).
      *objf_den = VecVec(den_term, minibatch.output_weights);
    }
  
    // The rest of this function computes the derivative w.r.t.
    // word_embedding_deriv and/or nnet_output_deriv, for which we
    if (!(word_embedding_deriv || nnet_output_deriv))
      return;
  
    // To avoid one CUDA operation, we're going to make 'word_logprobs'
    // the *negative* of the derivative of the objf w.r.t.
    // the original 'word_logprobs'  Note: don't worry about the
    // fact that we're including the epsilon word at this point;
    // later on we'll ignore the value of the first column.
  
    // The derivative of the function q(l) = (l < 0 ? exp(l) : l + 1.0)
    // equals (l < 0 ? exp(l) : 1.0), which we can compute by
    // applying a ceiling to q at 1.0.
    word_logprobs.ApplyCeiling(1.0);
  
  
    // Include the factor 'minibatch.output_weights'.
    word_logprobs.MulRowsVec(minibatch.output_weights);
  
  
  
    if (objective_config.den_term_limit != 0.0) {
      // If it's nonzero then check that it's negative, and not too close to zero,
      // which would likely cause failure to converge.  The default is 10.0.
      KALDI_ASSERT(objective_config.den_term_limit < -0.5);
      BaseFloat limit = objective_config.den_term_limit;
      if (weight != NULL && objf_den != NULL && *weight > 0 &&
          (*objf_den / *weight) < limit) {
        // note: both things being divided below are negative, and
        // 'scale' will be between zero and one.
        BaseFloat scale = limit / (*objf_den / *weight);
        // We scale the denominator part of the objective down by the inverse of
        // the factor by which the denominator part of the objective exceeds the
        // limit.  This point in the code should only be reached on the first few
        // iterations of training, or if there is some kind of instability,
        // because the (*objf_den / *weight) will usually be close to zero,
        // e.g. -0.01, while 'limit' is expected to be larger, like -10.0.
        word_logprobs.Scale(scale);
      }
    }
  
    // After the following statement, 'word_logprobs' will contains the negative
    // of the derivative of the objective function w.r.t. l(i, x), except that the
    // first column (for epsilon) should be ignored.
  
    word_logprobs.AddSmat(-1.0, derived.output_words_smat);
  
    // l_deriv_noeps is the negative of the derivative of the objective function
    // w.r.t. the unnormalized log-likelihoods 'l' (with the 0th row, for epsilon,
    // not included).
    CuSubMatrix<BaseFloat> l_deriv_noeps(word_logprobs,
                                         0, word_logprobs.NumRows(),
                                         1, num_words - 1);
  
    // The following statements are doing the backprop w.r.t. the statement:
    //  word_logprobs.AddMatMat(1.0, nnet_output, kNoTrans,
    //                          word_embedding, kTrans, 0.0);
    // (note: 'word_logprobs' in the code corresponds to 'l' in the formulas).
    // The -1.0's are because we have at this point the negative of the
    // derivative w.r.t the unnormalized log-likelihoods.
    if (word_embedding_deriv) {
      CuSubMatrix<BaseFloat> word_embedding_deriv_noeps(
          *word_embedding_deriv, 1, num_words - 1, 0, embedding_dim);
      word_embedding_deriv_noeps.AddMatMat(-1.0, l_deriv_noeps, kTrans,
                                           nnet_output, kNoTrans, 1.0);
    }
    if (nnet_output_deriv) {
      CuSubMatrix<BaseFloat> word_embedding_noeps(
          word_embedding, 1, num_words - 1, 0, embedding_dim);
      nnet_output_deriv->AddMatMat(-1.0, l_deriv_noeps, kNoTrans,
                                   word_embedding_noeps, kNoTrans, 1.0);
    }
  }
  
  // This is called from ProcessRnnlmOutput() when we are not doing importance
  // sampling, when [minibatch-size, num-word] matrix it too large to allocate on
  // GPU memory
  static void ProcessRnnlmOutputNoSamplingBatched(
      const RnnlmObjectiveOptions &objective_config,
      const RnnlmExample &minibatch,
      const RnnlmExampleDerived &derived,
      const CuMatrixBase<BaseFloat> &word_embedding,
      const CuMatrixBase<BaseFloat> &nnet_output,
      CuMatrixBase<BaseFloat> *word_embedding_deriv,
      CuMatrixBase<BaseFloat> *nnet_output_deriv,
      BaseFloat *weight,
      BaseFloat *objf_num,
      BaseFloat *objf_den,
      BaseFloat *objf_den_exact) {
    KALDI_ASSERT(weight != NULL && objf_den != NULL);  // Others are optional.
  
    int32 embedding_dim = word_embedding.NumCols();
    int32 num_words = word_embedding.NumRows();
  
    int32 batch_size = objective_config.max_logprob_elements / num_words;
    if (batch_size == 0) {
      batch_size = 1;
    }
    if (batch_size > nnet_output.NumRows()) {
      batch_size = nnet_output.NumRows();
    }
  
    int32 this_start = 0;
    *weight = minibatch.output_weights.Sum();
  
    if (objf_num) {
      *objf_num = 0.0;
    }
    if (objf_den_exact) {
      *objf_den_exact = 0.0;
    }
    *objf_den = 0.0;
  
    while (this_start < nnet_output.NumRows()) {
      int32 this_size = std::min(batch_size, nnet_output.NumRows() - this_start);
      // 'word_logprobs' contains the unnormalized logprobs of the words.
      CuMatrix<BaseFloat> word_logprobs(this_size, num_words);
      word_logprobs.AddMatMat(1.0, nnet_output.RowRange(this_start, this_size),
                              kNoTrans, word_embedding, kTrans, 0.0);
  
      // This is going to be equivalent to taking
      // derived.output_words_smat.RowRange(this_start, this_size)
      // though CuSparseMatrix does not have that interface
      CuSparseMatrix<BaseFloat> this_output_words_smat;
      if (objf_num) {
        std::vector<int32> output_words;
        std::vector<BaseFloat> output_weights;
        for (int32 i = this_start; i < this_start + this_size; i++) {
          output_words.push_back(minibatch.output_words[i]);
        }
        CuArray<int32> cu_output_words(output_words);
  
        CuSparseMatrix<BaseFloat> smat(cu_output_words,
          CuSubVector<BaseFloat>(minibatch.output_weights, this_start, this_size),
          num_words);
        this_output_words_smat.Swap(&smat);
        *objf_num += TraceMatSmat(word_logprobs,
                                  this_output_words_smat, kTrans);
      }
  
      CuSubVector<BaseFloat> this_output_weights(minibatch.output_weights,
                                                this_start, this_size);
      if (objf_den_exact) {
        // This code is not as optimized as it could be, but we don't take this
        // branch in training so efficiency doesn't matter as much.
        // The 'exact' denominator is the log of the sum of the
        // words' probs.
  
        // the -1 is to remove epsilon.
        CuMatrix<BaseFloat> word_probs(this_size, num_words - 1, kUndefined);
        word_probs.CopyFromMat(word_logprobs.ColRange(1, num_words - 1));
        word_probs.ApplyExp();
        CuVector<BaseFloat> row_sums(this_size);
        row_sums.AddColSumMat(1.0, word_probs, 0.0);
        row_sums.ApplyLog();
        *objf_den_exact -= VecVec(row_sums, this_output_weights);
      }
  
      // In preparation for computing the denominator objf, change 'word_logprobs'
      // to contain q = (l < 0 ? exp(l) : l + 1.0), instead of the unnormalized
      // logprob l.  For most purposes you can think of this as behaving like
      // exp(l); it just has better behavior at the beginning of training when there
      // is a danger of divergence.  We can prove that the objective is a closer
      // bound on the true (log-probability-based) objective than if we used a
      // simple exp.  note: all this bound stuff is really geared towards the
      // sampling case, there is really no point in it if we're not doing sampling
      // and some of these code paths will only be used in test code.
      word_logprobs.ApplyExpSpecial();
  
      { // This block computes *objf_den.
  
        // we call this variable 'q_noeps' because in the math described in
        // rnnlm-example-utils.h it is described as q(i,w), and because we're
        // skipping over the epsilon symbol (which we don't want to include in the
        // sum because it can never be output) by removing the first row.
        CuSubMatrix<BaseFloat> q_noeps(word_logprobs,
                                       0, word_logprobs.NumRows(),
                                       1, num_words - 1);
        // den_term(i) = 1.0 - (\sum_w q(i,w))
        CuVector<BaseFloat> den_term(word_logprobs.NumRows(), kUndefined);
        den_term.Set(1.0);
        den_term.AddColSumMat(-1.0, q_noeps, 1.0);
        // note: objf = \sum_i weight(i) * ( num_term(i) + den_term(i) ),
        // this is the term \sum_i weight(i) * den_term(i).
        *objf_den += VecVec(den_term, this_output_weights);
      }
  
      // The rest of this function computes the derivative w.r.t.
      // word_embedding_deriv and/or nnet_output_deriv, for which we
      if (!(word_embedding_deriv || nnet_output_deriv))
        continue;
  
      // To avoid one CUDA operation, we're going to make 'word_logprobs'
      // the *negative* of the derivative of the objf w.r.t.
      // the original 'word_logprobs'  Note: don't worry about the
      // fact that we're including the epsilon word at this point;
      // later on we'll ignore the value of the first column.
  
      // The derivative of the function q(l) = (l < 0 ? exp(l) : l + 1.0)
      // equals (l < 0 ? exp(l) : 1.0), which we can compute by
      // applying a ceiling to q at 1.0.
      word_logprobs.ApplyCeiling(1.0);
  
      // Include the factor 'minibatch.output_weights'.
      word_logprobs.MulRowsVec(this_output_weights);
  
      if (objective_config.den_term_limit != 0.0) {
        // If it's nonzero then check that it's negative, and not too close to zero,
        // which would likely cause failure to converge.  The default is 10.0.
        KALDI_ASSERT(objective_config.den_term_limit < -0.5);
        BaseFloat limit = objective_config.den_term_limit;
        if (weight != NULL && objf_den != NULL && *weight > 0 &&
            (*objf_den / *weight) < limit) {
          // note: both things being divided below are negative, and
          // 'scale' will be between zero and one.
          BaseFloat scale = limit / (*objf_den / *weight);
          // We scale the denominator part of the objective down by the inverse of
          // the factor by which the denominator part of the objective exceeds the
          // limit.  This point in the code should only be reached on the first few
          // iterations of training, or if there is some kind of instability,
          // because the (*objf_den / *weight) will usually be close to zero,
          // e.g. -0.01, while 'limit' is expected to be larger, like -10.0.
          word_logprobs.Scale(scale);
        }
      }
  
      // After the following statement, 'word_logprobs' will contains the negative
      // of the derivative of the objective function w.r.t. l(i, x), except that the
      // first column (for epsilon) should be ignored.
  
      word_logprobs.AddSmat(-1.0, this_output_words_smat);
  
      // l_deriv_noeps is the negative of the derivative of the objective function
      // w.r.t. the unnormalized log-likelihoods 'l' (with the 0th row, for epsilon,
      // not included).
      CuSubMatrix<BaseFloat> l_deriv_noeps(word_logprobs,
                                           0, this_size,
                                           1, num_words - 1);
  
      // The following statements are doing the backprop w.r.t. the statement:
      //  word_logprobs.AddMatMat(1.0, nnet_output, kNoTrans,
      //                          word_embedding, kTrans, 0.0);
      // (note: 'word_logprobs' in the code corresponds to 'l' in the formulas).
      // The -1.0's are because we have at this point the negative of the
      // derivative w.r.t the unnormalized log-likelihoods.
      if (word_embedding_deriv) {
        CuSubMatrix<BaseFloat> word_embedding_deriv_noeps(
            *word_embedding_deriv, 1, num_words - 1, 0, embedding_dim);
        word_embedding_deriv_noeps.AddMatMat(-1.0, l_deriv_noeps, kTrans,
                      nnet_output.RowRange(this_start, this_size), kNoTrans, 1.0);
      }
      if (nnet_output_deriv) {
        CuSubMatrix<BaseFloat> word_embedding_noeps(
            word_embedding, 1, num_words - 1, 0, embedding_dim);
        nnet_output_deriv->RowRange(this_start, this_size).
                           AddMatMat(-1.0, l_deriv_noeps, kNoTrans,
                                     word_embedding_noeps, kNoTrans, 1.0);
      }
      this_start += this_size;
    }
  }
  
  void ProcessRnnlmOutput(
      const RnnlmObjectiveOptions &objective_config,
      const RnnlmExample &minibatch,
      const RnnlmExampleDerived &derived,
      const CuMatrixBase<BaseFloat> &word_embedding,
      const CuMatrixBase<BaseFloat> &nnet_output,
      CuMatrixBase<BaseFloat> *word_embedding_deriv,
      CuMatrixBase<BaseFloat> *nnet_output_deriv,
      BaseFloat *weight,
      BaseFloat *objf_num,
      BaseFloat *objf_den,
      BaseFloat *objf_den_exact) {
    int32 num_chunks = minibatch.num_chunks,
        chunk_length = minibatch.chunk_length;
    KALDI_ASSERT(nnet_output.NumRows() == num_chunks * chunk_length &&
                 nnet_output.NumCols() == word_embedding.NumCols() &&
                 minibatch.vocab_size == word_embedding.NumRows());
  
    bool using_sampling = !(minibatch.sampled_words.empty());
    if (using_sampling) {
      ProcessRnnlmOutputSampling(objective_config,
                                 minibatch, derived, word_embedding,
                                 nnet_output, word_embedding_deriv,
                                 nnet_output_deriv, weight, objf_num,
                                 objf_den, objf_den_exact);
    } else {
      int64 size = int64(word_embedding.NumRows()) * nnet_output.NumRows();
      if (size < objective_config.max_logprob_elements) {
        ProcessRnnlmOutputNoSampling(objective_config,
                                     minibatch, derived, word_embedding,
                                     nnet_output, word_embedding_deriv,
                                     nnet_output_deriv, weight, objf_num,
                                     objf_den, objf_den_exact);
  
      } else {
        ProcessRnnlmOutputNoSamplingBatched(objective_config,
                                            minibatch, derived, word_embedding,
                                            nnet_output, word_embedding_deriv,
                                            nnet_output_deriv, weight, objf_num,
                                            objf_den, objf_den_exact);
      }
    }
  }
  
  void GetRnnlmExampleDerived(const RnnlmExample &minibatch,
                              bool need_embedding_deriv,
                              RnnlmExampleDerived *derived) {
    derived->cu_input_words = minibatch.input_words;
  
    bool using_sampling = !(minibatch.sampled_words.empty());
    if (using_sampling) {
      derived->cu_output_words = minibatch.output_words;
      derived->cu_sampled_words = minibatch.sampled_words;
    } else {
      CuArray<int32> cu_output_words(minibatch.output_words);
      CuSparseMatrix<BaseFloat> output_words_smat(cu_output_words,
                                                  minibatch.output_weights,
                                                  minibatch.vocab_size);
      derived->output_words_smat.Swap(&output_words_smat);
    }
  
    if (need_embedding_deriv) {
      CuSparseMatrix<BaseFloat> input_words_smat(derived->cu_input_words,
                                                 minibatch.vocab_size, kTrans);
      derived->input_words_smat.Swap(&input_words_smat);
    }
  }
  
  void RenumberRnnlmExample(RnnlmExample *minibatch,
                            std::vector<int32> *active_words) {
    KALDI_ASSERT(!minibatch->sampled_words.empty());
    unordered_set<int32> active_words_set;
    active_words_set.insert(minibatch->input_words.begin(),
                            minibatch->input_words.end());
    active_words_set.insert(minibatch->sampled_words.begin(),
                            minibatch->sampled_words.end());
  
    active_words->clear();
    active_words->insert(active_words->end(),
                         active_words_set.begin(),
                         active_words_set.end());
    std::sort(active_words->begin(),
              active_words->end());
    unordered_map<int32, int32> active_words_map;
    size_t n = active_words->size();
    for (size_t i = 0; i < n; i++)
      active_words_map[(*active_words)[i]] = i;
  
    // Now remap 'input_words' and 'sampled_words'
  
    std::vector<int32>::iterator iter = minibatch->input_words.begin(),
        end = minibatch->input_words.end();
    for (; iter != end; ++iter)
      *iter = active_words_map[*iter];
    iter = minibatch->sampled_words.begin();
    end = minibatch->sampled_words.end();
    for (; iter != end; ++iter)
      *iter = active_words_map[*iter];
    minibatch->vocab_size = static_cast<int32>(n);
  }
  
  }  // namespace rnnlm
  }  // namespace kaldi