Blame view
tools/cub-1.8.0/experimental/defunct/example_coo_spmv.cu
36.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /****************************************************************************** * An implementation of COO SpMV using prefix scan to implement a * reduce-value-by-row strategy ******************************************************************************/ // Ensure printing of CUDA runtime errors to console #define CUB_STDERR #include <iterator> #include <vector> #include <string> #include <algorithm> #include <stdio.h> #include <cub/cub.cuh> #include "coo_graph.cuh" #include "../test/test_util.h" using namespace cub; using namespace std; /****************************************************************************** * Globals, constants, and typedefs ******************************************************************************/ typedef int VertexId; // uint32s as vertex ids typedef double Value; // double-precision floating point values bool g_verbose = false; int g_timing_iterations = 1; CachingDeviceAllocator g_allocator; /****************************************************************************** * Texture referencing ******************************************************************************/ /** * Templated texture reference type for multiplicand vector */ template <typename Value> struct TexVector { // Texture type to actually use (e.g., because CUDA doesn't load doubles as texture items) typedef typename If<(Equals<Value, double>::VALUE), uint2, Value>::Type CastType; // Texture reference type typedef texture<CastType, cudaTextureType1D, cudaReadModeElementType> TexRef; static TexRef ref; /** * Bind textures */ static void BindTexture(void *d_in, int elements) { cudaChannelFormatDesc tex_desc = cudaCreateChannelDesc<CastType>(); if (d_in) { size_t offset; size_t bytes = sizeof(CastType) * elements; CubDebugExit(cudaBindTexture(&offset, ref, d_in, tex_desc, bytes)); } } /** * Unbind textures */ static void UnbindTexture() { CubDebugExit(cudaUnbindTexture(ref)); } /** * Load */ static __device__ __forceinline__ Value Load(int offset) { Value output; reinterpret_cast<typename TexVector<Value>::CastType &>(output) = tex1Dfetch(TexVector<Value>::ref, offset); return output; } }; // Texture reference definitions template <typename Value> typename TexVector<Value>::TexRef TexVector<Value>::ref = 0; /****************************************************************************** * Utility types ******************************************************************************/ /** * A partial dot-product sum paired with a corresponding row-id */ template <typename VertexId, typename Value> struct PartialProduct { VertexId row; /// Row-id Value partial; /// PartialProduct sum }; /** * A partial dot-product sum paired with a corresponding row-id (specialized for double-int pairings) */ template <> struct PartialProduct<int, double> { long long row; /// Row-id double partial; /// PartialProduct sum }; /** * Reduce-value-by-row scan operator */ struct ReduceByKeyOp { template <typename PartialProduct> __device__ __forceinline__ PartialProduct operator()( const PartialProduct &first, const PartialProduct &second) { PartialProduct retval; retval.partial = (second.row != first.row) ? second.partial : first.partial + second.partial; retval.row = second.row; return retval; } }; /** * Stateful block-wide prefix operator for BlockScan */ template <typename PartialProduct> struct BlockPrefixCallbackOp { // Running block-wide prefix PartialProduct running_prefix; /** * Returns the block-wide running_prefix in thread-0 */ __device__ __forceinline__ PartialProduct operator()( const PartialProduct &block_aggregate) ///< The aggregate sum of the BlockScan inputs { ReduceByKeyOp scan_op; PartialProduct retval = running_prefix; running_prefix = scan_op(running_prefix, block_aggregate); return retval; } }; /** * Operator for detecting discontinuities in a list of row identifiers. */ struct NewRowOp { /// Returns true if row_b is the start of a new row template <typename VertexId> __device__ __forceinline__ bool operator()( const VertexId& row_a, const VertexId& row_b) { return (row_a != row_b); } }; /****************************************************************************** * Persistent thread block types ******************************************************************************/ /** * SpMV thread block abstraction for processing a contiguous segment of * sparse COO tiles. */ template < int BLOCK_THREADS, int ITEMS_PER_THREAD, typename VertexId, typename Value> struct PersistentBlockSpmv { //--------------------------------------------------------------------- // Types and constants //--------------------------------------------------------------------- // Constants enum { TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD, }; // Head flag type typedef int HeadFlag; // Partial dot product type typedef PartialProduct<VertexId, Value> PartialProduct; // Parameterized BlockScan type for reduce-value-by-row scan typedef BlockScan<PartialProduct, BLOCK_THREADS, BLOCK_SCAN_RAKING_MEMOIZE> BlockScan; // Parameterized BlockExchange type for exchanging rows between warp-striped -> blocked arrangements typedef BlockExchange<VertexId, BLOCK_THREADS, ITEMS_PER_THREAD, true> BlockExchangeRows; // Parameterized BlockExchange type for exchanging values between warp-striped -> blocked arrangements typedef BlockExchange<Value, BLOCK_THREADS, ITEMS_PER_THREAD, true> BlockExchangeValues; // Parameterized BlockDiscontinuity type for setting head-flags for each new row segment typedef BlockDiscontinuity<HeadFlag, BLOCK_THREADS> BlockDiscontinuity; // Shared memory type for this thread block struct TempStorage { union { typename BlockExchangeRows::TempStorage exchange_rows; // Smem needed for BlockExchangeRows typename BlockExchangeValues::TempStorage exchange_values; // Smem needed for BlockExchangeValues struct { typename BlockScan::TempStorage scan; // Smem needed for BlockScan typename BlockDiscontinuity::TempStorage discontinuity; // Smem needed for BlockDiscontinuity }; }; VertexId first_block_row; ///< The first row-ID seen by this thread block VertexId last_block_row; ///< The last row-ID seen by this thread block Value first_product; ///< The first dot-product written by this thread block }; //--------------------------------------------------------------------- // Thread fields //--------------------------------------------------------------------- TempStorage &temp_storage; BlockPrefixCallbackOp<PartialProduct> prefix_op; VertexId *d_rows; VertexId *d_columns; Value *d_values; Value *d_vector; Value *d_result; PartialProduct *d_block_partials; int block_offset; int block_end; //--------------------------------------------------------------------- // Operations //--------------------------------------------------------------------- /** * Constructor */ __device__ __forceinline__ PersistentBlockSpmv( TempStorage &temp_storage, VertexId *d_rows, VertexId *d_columns, Value *d_values, Value *d_vector, Value *d_result, PartialProduct *d_block_partials, int block_offset, int block_end) : temp_storage(temp_storage), d_rows(d_rows), d_columns(d_columns), d_values(d_values), d_vector(d_vector), d_result(d_result), d_block_partials(d_block_partials), block_offset(block_offset), block_end(block_end) { // Initialize scalar shared memory values if (threadIdx.x == 0) { VertexId first_block_row = d_rows[block_offset]; VertexId last_block_row = d_rows[block_end - 1]; temp_storage.first_block_row = first_block_row; temp_storage.last_block_row = last_block_row; temp_storage.first_product = Value(0); // Initialize prefix_op to identity prefix_op.running_prefix.row = first_block_row; prefix_op.running_prefix.partial = Value(0); } __syncthreads(); } /** * Processes a COO input tile of edges, outputting dot products for each row */ template <bool FULL_TILE> __device__ __forceinline__ void ProcessTile( int block_offset, int guarded_items = 0) { VertexId columns[ITEMS_PER_THREAD]; VertexId rows[ITEMS_PER_THREAD]; Value values[ITEMS_PER_THREAD]; PartialProduct partial_sums[ITEMS_PER_THREAD]; HeadFlag head_flags[ITEMS_PER_THREAD]; // Load a thread block-striped tile of A (sparse row-ids, column-ids, and values) if (FULL_TILE) { // Unguarded loads LoadDirectWarpStriped<LOAD_DEFAULT>(threadIdx.x, d_columns + block_offset, columns); LoadDirectWarpStriped<LOAD_DEFAULT>(threadIdx.x, d_values + block_offset, values); LoadDirectWarpStriped<LOAD_DEFAULT>(threadIdx.x, d_rows + block_offset, rows); } else { // This is a partial-tile (e.g., the last tile of input). Extend the coordinates of the last // vertex for out-of-bound items, but zero-valued LoadDirectWarpStriped<LOAD_DEFAULT>(threadIdx.x, d_columns + block_offset, columns, guarded_items, VertexId(0)); LoadDirectWarpStriped<LOAD_DEFAULT>(threadIdx.x, d_values + block_offset, values, guarded_items, Value(0)); LoadDirectWarpStriped<LOAD_DEFAULT>(threadIdx.x, d_rows + block_offset, rows, guarded_items, temp_storage.last_block_row); } // Load the referenced values from x and compute the dot product partials sums #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { #if CUB_PTX_ARCH >= 350 values[ITEM] *= ThreadLoad<LOAD_LDG>(d_vector + columns[ITEM]); #else values[ITEM] *= TexVector<Value>::Load(columns[ITEM]); #endif } // Transpose from warp-striped to blocked arrangement BlockExchangeValues(temp_storage.exchange_values).WarpStripedToBlocked(values); __syncthreads(); // Transpose from warp-striped to blocked arrangement BlockExchangeRows(temp_storage.exchange_rows).WarpStripedToBlocked(rows); // Barrier for smem reuse and coherence __syncthreads(); // FlagT row heads by looking for discontinuities BlockDiscontinuity(temp_storage.discontinuity).FlagHeads( head_flags, // (Out) Head flags rows, // Original row ids NewRowOp(), // Functor for detecting start of new rows prefix_op.running_prefix.row); // Last row ID from previous tile to compare with first row ID in this tile // Assemble partial product structures #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { partial_sums[ITEM].partial = values[ITEM]; partial_sums[ITEM].row = rows[ITEM]; } // Reduce reduce-value-by-row across partial_sums using exclusive prefix scan PartialProduct block_aggregate; BlockScan(temp_storage.scan).ExclusiveScan( partial_sums, // Scan input partial_sums, // Scan output ReduceByKeyOp(), // Scan operator block_aggregate, // Block-wide total (unused) prefix_op); // Prefix operator for seeding the block-wide scan with the running total // Barrier for smem reuse and coherence __syncthreads(); // Scatter an accumulated dot product if it is the head of a valid row #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if (head_flags[ITEM]) { d_result[partial_sums[ITEM].row] = partial_sums[ITEM].partial; // Save off the first partial product that this thread block will scatter if (partial_sums[ITEM].row == temp_storage.first_block_row) { temp_storage.first_product = partial_sums[ITEM].partial; } } } } /** * Iterate over input tiles belonging to this thread block */ __device__ __forceinline__ void ProcessTiles() { // Process full tiles while (block_offset <= block_end - TILE_ITEMS) { ProcessTile<true>(block_offset); block_offset += TILE_ITEMS; } // Process the last, partially-full tile (if present) int guarded_items = block_end - block_offset; if (guarded_items) { ProcessTile<false>(block_offset, guarded_items); } if (threadIdx.x == 0) { if (gridDim.x == 1) { // Scatter the final aggregate (this kernel contains only 1 thread block) d_result[prefix_op.running_prefix.row] = prefix_op.running_prefix.partial; } else { // Write the first and last partial products from this thread block so // that they can be subsequently "fixed up" in the next kernel. PartialProduct first_product; first_product.row = temp_storage.first_block_row; first_product.partial = temp_storage.first_product; d_block_partials[blockIdx.x * 2] = first_product; d_block_partials[(blockIdx.x * 2) + 1] = prefix_op.running_prefix; } } } }; /** * Threadblock abstraction for "fixing up" an array of interblock SpMV partial products. */ template < int BLOCK_THREADS, int ITEMS_PER_THREAD, typename VertexId, typename Value> struct FinalizeSpmvBlock { //--------------------------------------------------------------------- // Types and constants //--------------------------------------------------------------------- // Constants enum { TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD, }; // Head flag type typedef int HeadFlag; // Partial dot product type typedef PartialProduct<VertexId, Value> PartialProduct; // Parameterized BlockScan type for reduce-value-by-row scan typedef BlockScan<PartialProduct, BLOCK_THREADS, BLOCK_SCAN_RAKING_MEMOIZE> BlockScan; // Parameterized BlockDiscontinuity type for setting head-flags for each new row segment typedef BlockDiscontinuity<HeadFlag, BLOCK_THREADS> BlockDiscontinuity; // Shared memory type for this thread block struct TempStorage { typename BlockScan::TempStorage scan; // Smem needed for reduce-value-by-row scan typename BlockDiscontinuity::TempStorage discontinuity; // Smem needed for head-flagging VertexId last_block_row; }; //--------------------------------------------------------------------- // Thread fields //--------------------------------------------------------------------- TempStorage &temp_storage; BlockPrefixCallbackOp<PartialProduct> prefix_op; Value *d_result; PartialProduct *d_block_partials; int num_partials; //--------------------------------------------------------------------- // Operations //--------------------------------------------------------------------- /** * Constructor */ __device__ __forceinline__ FinalizeSpmvBlock( TempStorage &temp_storage, Value *d_result, PartialProduct *d_block_partials, int num_partials) : temp_storage(temp_storage), d_result(d_result), d_block_partials(d_block_partials), num_partials(num_partials) { // Initialize scalar shared memory values if (threadIdx.x == 0) { VertexId first_block_row = d_block_partials[0].row; VertexId last_block_row = d_block_partials[num_partials - 1].row; temp_storage.last_block_row = last_block_row; // Initialize prefix_op to identity prefix_op.running_prefix.row = first_block_row; prefix_op.running_prefix.partial = Value(0); } __syncthreads(); } /** * Processes a COO input tile of edges, outputting dot products for each row */ template <bool FULL_TILE> __device__ __forceinline__ void ProcessTile( int block_offset, int guarded_items = 0) { VertexId rows[ITEMS_PER_THREAD]; PartialProduct partial_sums[ITEMS_PER_THREAD]; HeadFlag head_flags[ITEMS_PER_THREAD]; // Load a tile of block partials from previous kernel if (FULL_TILE) { // Full tile #if CUB_PTX_ARCH >= 350 LoadDirectBlocked<LOAD_LDG>(threadIdx.x, d_block_partials + block_offset, partial_sums); #else LoadDirectBlocked(threadIdx.x, d_block_partials + block_offset, partial_sums); #endif } else { // Partial tile (extend zero-valued coordinates of the last partial-product for out-of-bounds items) PartialProduct default_sum; default_sum.row = temp_storage.last_block_row; default_sum.partial = Value(0); #if CUB_PTX_ARCH >= 350 LoadDirectBlocked<LOAD_LDG>(threadIdx.x, d_block_partials + block_offset, partial_sums, guarded_items, default_sum); #else LoadDirectBlocked(threadIdx.x, d_block_partials + block_offset, partial_sums, guarded_items, default_sum); #endif } // Copy out row IDs for row-head flagging #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { rows[ITEM] = partial_sums[ITEM].row; } // FlagT row heads by looking for discontinuities BlockDiscontinuity(temp_storage.discontinuity).FlagHeads( rows, // Original row ids head_flags, // (Out) Head flags NewRowOp(), // Functor for detecting start of new rows prefix_op.running_prefix.row); // Last row ID from previous tile to compare with first row ID in this tile // Reduce reduce-value-by-row across partial_sums using exclusive prefix scan PartialProduct block_aggregate; BlockScan(temp_storage.scan).ExclusiveScan( partial_sums, // Scan input partial_sums, // Scan output ReduceByKeyOp(), // Scan operator block_aggregate, // Block-wide total (unused) prefix_op); // Prefix operator for seeding the block-wide scan with the running total // Scatter an accumulated dot product if it is the head of a valid row #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if (head_flags[ITEM]) { d_result[partial_sums[ITEM].row] = partial_sums[ITEM].partial; } } } /** * Iterate over input tiles belonging to this thread block */ __device__ __forceinline__ void ProcessTiles() { // Process full tiles int block_offset = 0; while (block_offset <= num_partials - TILE_ITEMS) { ProcessTile<true>(block_offset); block_offset += TILE_ITEMS; } // Process final partial tile (if present) int guarded_items = num_partials - block_offset; if (guarded_items) { ProcessTile<false>(block_offset, guarded_items); } // Scatter the final aggregate (this kernel contains only 1 thread block) if (threadIdx.x == 0) { d_result[prefix_op.running_prefix.row] = prefix_op.running_prefix.partial; } } }; /****************************************************************************** * Kernel entrypoints ******************************************************************************/ /** * SpMV kernel whose thread blocks each process a contiguous segment of sparse COO tiles. */ template < int BLOCK_THREADS, int ITEMS_PER_THREAD, typename VertexId, typename Value> __launch_bounds__ (BLOCK_THREADS) __global__ void CooKernel( GridEvenShare<int> even_share, PartialProduct<VertexId, Value> *d_block_partials, VertexId *d_rows, VertexId *d_columns, Value *d_values, Value *d_vector, Value *d_result) { // Specialize SpMV thread block abstraction type typedef PersistentBlockSpmv<BLOCK_THREADS, ITEMS_PER_THREAD, VertexId, Value> PersistentBlockSpmv; // Shared memory allocation __shared__ typename PersistentBlockSpmv::TempStorage temp_storage; // Initialize thread block even-share to tell us where to start and stop our tile-processing even_share.BlockInit(); // Construct persistent thread block PersistentBlockSpmv persistent_block( temp_storage, d_rows, d_columns, d_values, d_vector, d_result, d_block_partials, even_share.block_offset, even_share.block_end); // Process input tiles persistent_block.ProcessTiles(); } /** * Kernel for "fixing up" an array of interblock SpMV partial products. */ template < int BLOCK_THREADS, int ITEMS_PER_THREAD, typename VertexId, typename Value> __launch_bounds__ (BLOCK_THREADS, 1) __global__ void CooFinalizeKernel( PartialProduct<VertexId, Value> *d_block_partials, int num_partials, Value *d_result) { // Specialize "fix-up" thread block abstraction type typedef FinalizeSpmvBlock<BLOCK_THREADS, ITEMS_PER_THREAD, VertexId, Value> FinalizeSpmvBlock; // Shared memory allocation __shared__ typename FinalizeSpmvBlock::TempStorage temp_storage; // Construct persistent thread block FinalizeSpmvBlock persistent_block(temp_storage, d_result, d_block_partials, num_partials); // Process input tiles persistent_block.ProcessTiles(); } //--------------------------------------------------------------------- // Host subroutines //--------------------------------------------------------------------- /** * Simple test of device */ template < int COO_BLOCK_THREADS, int COO_ITEMS_PER_THREAD, int COO_SUBSCRIPTION_FACTOR, int FINALIZE_BLOCK_THREADS, int FINALIZE_ITEMS_PER_THREAD, typename VertexId, typename Value> void TestDevice( CooGraph<VertexId, Value>& coo_graph, Value* h_vector, Value* h_reference) { typedef PartialProduct<VertexId, Value> PartialProduct; const int COO_TILE_SIZE = COO_BLOCK_THREADS * COO_ITEMS_PER_THREAD; // SOA device storage VertexId *d_rows; // SOA graph row coordinates VertexId *d_columns; // SOA graph col coordinates Value *d_values; // SOA graph values Value *d_vector; // Vector multiplicand Value *d_result; // Output row PartialProduct *d_block_partials; // Temporary storage for communicating dot product partials between thread blocks // Create SOA version of coo_graph on host int num_edges = coo_graph.coo_tuples.size(); VertexId *h_rows = new VertexId[num_edges]; VertexId *h_columns = new VertexId[num_edges]; Value *h_values = new Value[num_edges]; for (int i = 0; i < num_edges; i++) { h_rows[i] = coo_graph.coo_tuples[i].row; h_columns[i] = coo_graph.coo_tuples[i].col; h_values[i] = coo_graph.coo_tuples[i].val; } // Get CUDA properties Device device_props; CubDebugExit(device_props.Init()); // Determine launch configuration from kernel properties int coo_sm_occupancy; CubDebugExit(device_props.MaxSmOccupancy( coo_sm_occupancy, CooKernel<COO_BLOCK_THREADS, COO_ITEMS_PER_THREAD, VertexId, Value>, COO_BLOCK_THREADS)); int max_coo_grid_size = device_props.sm_count * coo_sm_occupancy * COO_SUBSCRIPTION_FACTOR; // Construct an even-share work distribution GridEvenShare<int> even_share(num_edges, max_coo_grid_size, COO_TILE_SIZE); int coo_grid_size = even_share.grid_size; int num_partials = coo_grid_size * 2; // Allocate COO device arrays CubDebugExit(g_allocator.DeviceAllocate((void**)&d_rows, sizeof(VertexId) * num_edges)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_columns, sizeof(VertexId) * num_edges)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values, sizeof(Value) * num_edges)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_vector, sizeof(Value) * coo_graph.col_dim)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_result, sizeof(Value) * coo_graph.row_dim)); CubDebugExit(g_allocator.DeviceAllocate((void**)&d_block_partials, sizeof(PartialProduct) * num_partials)); // Copy host arrays to device CubDebugExit(cudaMemcpy(d_rows, h_rows, sizeof(VertexId) * num_edges, cudaMemcpyHostToDevice)); CubDebugExit(cudaMemcpy(d_columns, h_columns, sizeof(VertexId) * num_edges, cudaMemcpyHostToDevice)); CubDebugExit(cudaMemcpy(d_values, h_values, sizeof(Value) * num_edges, cudaMemcpyHostToDevice)); CubDebugExit(cudaMemcpy(d_vector, h_vector, sizeof(Value) * coo_graph.col_dim, cudaMemcpyHostToDevice)); // Bind textures TexVector<Value>::BindTexture(d_vector, coo_graph.col_dim); // Print debug info printf("CooKernel<%d, %d><<<%d, %d>>>(...), Max SM occupancy: %d ", COO_BLOCK_THREADS, COO_ITEMS_PER_THREAD, coo_grid_size, COO_BLOCK_THREADS, coo_sm_occupancy); if (coo_grid_size > 1) { printf("CooFinalizeKernel<<<1, %d>>>(...) ", FINALIZE_BLOCK_THREADS); } fflush(stdout); CubDebugExit(cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte)); // Run kernel (always run one iteration without timing) GpuTimer gpu_timer; float elapsed_millis = 0.0; for (int i = 0; i <= g_timing_iterations; i++) { gpu_timer.Start(); // Initialize output CubDebugExit(cudaMemset(d_result, 0, coo_graph.row_dim * sizeof(Value))); // Run the COO kernel CooKernel<COO_BLOCK_THREADS, COO_ITEMS_PER_THREAD><<<coo_grid_size, COO_BLOCK_THREADS>>>( even_share, d_block_partials, d_rows, d_columns, d_values, d_vector, d_result); if (coo_grid_size > 1) { // Run the COO finalize kernel CooFinalizeKernel<FINALIZE_BLOCK_THREADS, FINALIZE_ITEMS_PER_THREAD><<<1, FINALIZE_BLOCK_THREADS>>>( d_block_partials, num_partials, d_result); } gpu_timer.Stop(); if (i > 0) elapsed_millis += gpu_timer.ElapsedMillis(); } // Force any kernel stdio to screen CubDebugExit(cudaThreadSynchronize()); fflush(stdout); // Display timing if (g_timing_iterations > 0) { float avg_elapsed = elapsed_millis / g_timing_iterations; int total_bytes = ((sizeof(VertexId) + sizeof(VertexId)) * 2 * num_edges) + (sizeof(Value) * coo_graph.row_dim); printf("%d iterations, average elapsed (%.3f ms), utilized bandwidth (%.3f GB/s), GFLOPS(%.3f) ", g_timing_iterations, avg_elapsed, total_bytes / avg_elapsed / 1000.0 / 1000.0, num_edges * 2 / avg_elapsed / 1000.0 / 1000.0); } // Check results int compare = CompareDeviceResults(h_reference, d_result, coo_graph.row_dim, true, g_verbose); printf("%s ", compare ? "FAIL" : "PASS"); AssertEquals(0, compare); // Cleanup TexVector<Value>::UnbindTexture(); CubDebugExit(g_allocator.DeviceFree(d_block_partials)); CubDebugExit(g_allocator.DeviceFree(d_rows)); CubDebugExit(g_allocator.DeviceFree(d_columns)); CubDebugExit(g_allocator.DeviceFree(d_values)); CubDebugExit(g_allocator.DeviceFree(d_vector)); CubDebugExit(g_allocator.DeviceFree(d_result)); delete[] h_rows; delete[] h_columns; delete[] h_values; } /** * Compute reference answer on CPU */ template <typename VertexId, typename Value> void ComputeReference( CooGraph<VertexId, Value>& coo_graph, Value* h_vector, Value* h_reference) { for (VertexId i = 0; i < coo_graph.row_dim; i++) { h_reference[i] = 0.0; } for (VertexId i = 0; i < coo_graph.coo_tuples.size(); i++) { h_reference[coo_graph.coo_tuples[i].row] += coo_graph.coo_tuples[i].val * h_vector[coo_graph.coo_tuples[i].col]; } } /** * Assign arbitrary values to vector items */ template <typename Value> void AssignVectorValues(Value *vector, int col_dim) { for (int i = 0; i < col_dim; i++) { vector[i] = 1.0; } } /** * Main */ int main(int argc, char** argv) { // Initialize command line CommandLineArgs args(argc, argv); g_verbose = args.CheckCmdLineFlag("v"); args.GetCmdLineArgument("i", g_timing_iterations); // Print usage if (args.CheckCmdLineFlag("help")) { printf("%s [--device=<device-id>] [--v] [--iterations=<test iterations>] [--grid-size=<grid-size>] " "\t--type=wheel --spokes=<spokes> " "\t--type=grid2d --width=<width> [--no-self-loops] " "\t--type=grid3d --width=<width> [--no-self-loops] " "\t--type=market --file=<file> " " ", argv[0]); exit(0); } // Initialize device CubDebugExit(args.DeviceInit()); // Get graph type string type; args.GetCmdLineArgument("type", type); // Generate graph structure CpuTimer timer; timer.Start(); CooGraph<VertexId, Value> coo_graph; if (type == string("grid2d")) { VertexId width; args.GetCmdLineArgument("width", width); bool self_loops = !args.CheckCmdLineFlag("no-self-loops"); printf("Generating %s grid2d width(%d)... ", (self_loops) ? "5-pt" : "4-pt", width); fflush(stdout); if (coo_graph.InitGrid2d(width, self_loops)) exit(1); } else if (type == string("grid3d")) { VertexId width; args.GetCmdLineArgument("width", width); bool self_loops = !args.CheckCmdLineFlag("no-self-loops"); printf("Generating %s grid3d width(%d)... ", (self_loops) ? "7-pt" : "6-pt", width); fflush(stdout); if (coo_graph.InitGrid3d(width, self_loops)) exit(1); } else if (type == string("wheel")) { VertexId spokes; args.GetCmdLineArgument("spokes", spokes); printf("Generating wheel spokes(%d)... ", spokes); fflush(stdout); if (coo_graph.InitWheel(spokes)) exit(1); } else if (type == string("market")) { string filename; args.GetCmdLineArgument("file", filename); printf("Generating MARKET for %s... ", filename.c_str()); fflush(stdout); if (coo_graph.InitMarket(filename)) exit(1); } else { printf("Unsupported graph type "); exit(1); } timer.Stop(); printf("Done (%.3fs). %d non-zeros, %d rows, %d columns ", timer.ElapsedMillis() / 1000.0, coo_graph.coo_tuples.size(), coo_graph.row_dim, coo_graph.col_dim); fflush(stdout); if (g_verbose) { cout << coo_graph << " "; } // Create vector Value *h_vector = new Value[coo_graph.col_dim]; AssignVectorValues(h_vector, coo_graph.col_dim); if (g_verbose) { printf("Vector[%d]: ", coo_graph.col_dim); DisplayResults(h_vector, coo_graph.col_dim); printf(" "); } // Compute reference answer Value *h_reference = new Value[coo_graph.row_dim]; ComputeReference(coo_graph, h_vector, h_reference); if (g_verbose) { printf("Results[%d]: ", coo_graph.row_dim); DisplayResults(h_reference, coo_graph.row_dim); printf(" "); } // Parameterization for SM35 enum { COO_BLOCK_THREADS = 64, COO_ITEMS_PER_THREAD = 10, COO_SUBSCRIPTION_FACTOR = 4, FINALIZE_BLOCK_THREADS = 256, FINALIZE_ITEMS_PER_THREAD = 4, }; // Run GPU version TestDevice< COO_BLOCK_THREADS, COO_ITEMS_PER_THREAD, COO_SUBSCRIPTION_FACTOR, FINALIZE_BLOCK_THREADS, FINALIZE_ITEMS_PER_THREAD>(coo_graph, h_vector, h_reference); // Cleanup delete[] h_vector; delete[] h_reference; return 0; } |