Blame view

tools/cub-1.8.0/experimental/histogram_compare.cu 21.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
  /******************************************************************************
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  #include <stdio.h>
  #include <map>
  #include <vector>
  #include <algorithm>
  #include <cstdio>
  #include <fstream>
  
  #include "histogram/histogram_gmem_atomics.h"
  #include "histogram/histogram_smem_atomics.h"
  #include "histogram/histogram_cub.h"
  
  #include <cub/util_allocator.cuh>
  #include <test/test_util.h>
  
  using namespace cub;
  
  //---------------------------------------------------------------------
  // Globals, constants, and type declarations
  //---------------------------------------------------------------------
  
  // Ensure printing of CUDA runtime errors to console
  #define CUB_STDERR
  
  bool                    g_verbose = false;  // Whether to display input/output to console
  bool                    g_report = false;   // Whether to display a full report in CSV format
  CachingDeviceAllocator  g_allocator(true);  // Caching allocator for device memory
  
  struct less_than_value
  {
      inline bool operator()(
          const std::pair<std::string, double> &a,
          const std::pair<std::string, double> &b)
      {
          return a.second < b.second;
      }
  };
  
  
  //---------------------------------------------------------------------
  // Targa (.tga) image file parsing
  //---------------------------------------------------------------------
  
  /**
   * TGA image header info
   */
  struct TgaHeader
  {
      char idlength;
      char colormaptype;
      char datatypecode;
      short colormaporigin;
      short colormaplength;
      char colormapdepth;
      short x_origin;
      short y_origin;
      short width;
      short height;
      char bitsperpixel;
      char imagedescriptor;
  
      void Parse (FILE *fptr)
      {
          idlength = fgetc(fptr);
          colormaptype = fgetc(fptr);
          datatypecode = fgetc(fptr);
          fread(&colormaporigin, 2, 1, fptr);
          fread(&colormaplength, 2, 1, fptr);
          colormapdepth = fgetc(fptr);
          fread(&x_origin, 2, 1, fptr);
          fread(&y_origin, 2, 1, fptr);
          fread(&width, 2, 1, fptr);
          fread(&height, 2, 1, fptr);
          bitsperpixel = fgetc(fptr);
          imagedescriptor = fgetc(fptr);
      }
  
      void Display (FILE *fptr)
      {
          fprintf(fptr, "ID length:           %d
  ", idlength);
          fprintf(fptr, "Color map type:      %d
  ", colormaptype);
          fprintf(fptr, "Image type:          %d
  ", datatypecode);
          fprintf(fptr, "Color map offset:    %d
  ", colormaporigin);
          fprintf(fptr, "Color map length:    %d
  ", colormaplength);
          fprintf(fptr, "Color map depth:     %d
  ", colormapdepth);
          fprintf(fptr, "X origin:            %d
  ", x_origin);
          fprintf(fptr, "Y origin:            %d
  ", y_origin);
          fprintf(fptr, "Width:               %d
  ", width);
          fprintf(fptr, "Height:              %d
  ", height);
          fprintf(fptr, "Bits per pixel:      %d
  ", bitsperpixel);
          fprintf(fptr, "Descriptor:          %d
  ", imagedescriptor);
      }
  };
  
  
  /**
   * Decode image byte data into pixel
   */
  void ParseTgaPixel(uchar4 &pixel, unsigned char *tga_pixel, int bytes)
  {
      if (bytes == 4)
      {
          pixel.x = tga_pixel[2];
          pixel.y = tga_pixel[1];
          pixel.z = tga_pixel[0];
          pixel.w = tga_pixel[3];
      }
      else if (bytes == 3)
      {
          pixel.x = tga_pixel[2];
          pixel.y = tga_pixel[1];
          pixel.z = tga_pixel[0];
          pixel.w = 0;
      }
      else if (bytes == 2)
      {
          pixel.x = (tga_pixel[1] & 0x7c) << 1;
          pixel.y = ((tga_pixel[1] & 0x03) << 6) | ((tga_pixel[0] & 0xe0) >> 2);
          pixel.z = (tga_pixel[0] & 0x1f) << 3;
          pixel.w = (tga_pixel[1] & 0x80);
      }
  }
  
  
  /**
   * Reads a .tga image file
   */
  void ReadTga(uchar4* &pixels, int &width, int &height, const char *filename)
  {
      // Open the file
      FILE *fptr;
      if ((fptr = fopen(filename, "rb")) == NULL)
      {
          fprintf(stderr, "File open failed
  ");
          exit(-1);
      }
  
      // Parse header
      TgaHeader header;
      header.Parse(fptr);
  //    header.Display(stdout);
      width = header.width;
      height = header.height;
  
      // Verify compatibility
      if (header.datatypecode != 2 && header.datatypecode != 10)
      {
          fprintf(stderr, "Can only handle image type 2 and 10
  ");
          exit(-1);
      }
      if (header.bitsperpixel != 16 && header.bitsperpixel != 24 && header.bitsperpixel != 32)
      {
          fprintf(stderr, "Can only handle pixel depths of 16, 24, and 32
  ");
          exit(-1);
      }
      if (header.colormaptype != 0 && header.colormaptype != 1)
      {
          fprintf(stderr, "Can only handle color map types of 0 and 1
  ");
          exit(-1);
      }
  
      // Skip unnecessary header info
      int skip_bytes = header.idlength + (header.colormaptype * header.colormaplength);
      fseek(fptr, skip_bytes, SEEK_CUR);
  
      // Read the image
      int pixel_bytes = header.bitsperpixel / 8;
  
      // Allocate and initialize pixel data
      size_t image_bytes = width * height * sizeof(uchar4);
      if ((pixels == NULL) && ((pixels = (uchar4*) malloc(image_bytes)) == NULL))
      {
          fprintf(stderr, "malloc of image failed
  ");
          exit(-1);
      }
      memset(pixels, 0, image_bytes);
  
      // Parse pixels
      unsigned char   tga_pixel[5];
      int             current_pixel = 0;
      while (current_pixel < header.width * header.height)
      {
          if (header.datatypecode == 2)
          {
              // Uncompressed
              if (fread(tga_pixel, 1, pixel_bytes, fptr) != pixel_bytes)
              {
                  fprintf(stderr, "Unexpected end of file at pixel %d  (uncompressed)
  ", current_pixel);
                  exit(-1);
              }
              ParseTgaPixel(pixels[current_pixel], tga_pixel, pixel_bytes);
              current_pixel++;
          }
          else if (header.datatypecode == 10)
          {
              // Compressed
              if (fread(tga_pixel, 1, pixel_bytes + 1, fptr) != pixel_bytes + 1)
              {
                  fprintf(stderr, "Unexpected end of file at pixel %d (compressed)
  ", current_pixel);
                  exit(-1);
              }
              int run_length = tga_pixel[0] & 0x7f;
              ParseTgaPixel(pixels[current_pixel], &(tga_pixel[1]), pixel_bytes);
              current_pixel++;
  
              if (tga_pixel[0] & 0x80)
              {
                  // RLE chunk
                  for (int i = 0; i < run_length; i++)
                  {
                      ParseTgaPixel(pixels[current_pixel], &(tga_pixel[1]), pixel_bytes);
                      current_pixel++;
                  }
              }
              else
              {
                  // Normal chunk
                  for (int i = 0; i < run_length; i++)
                  {
                      if (fread(tga_pixel, 1, pixel_bytes, fptr) != pixel_bytes)
                      {
                          fprintf(stderr, "Unexpected end of file at pixel %d (normal)
  ", current_pixel);
                          exit(-1);
                      }
                      ParseTgaPixel(pixels[current_pixel], tga_pixel, pixel_bytes);
                      current_pixel++;
                  }
              }
          }
      }
  
      // Close file
      fclose(fptr);
  }
  
  
  
  //---------------------------------------------------------------------
  // Random image generation
  //---------------------------------------------------------------------
  
  /**
   * Generate a random image with specified entropy
   */
  void GenerateRandomImage(uchar4* &pixels, int width, int height, int entropy_reduction)
  {
      int num_pixels = width * height;
      size_t image_bytes = num_pixels * sizeof(uchar4);
      if ((pixels == NULL) && ((pixels = (uchar4*) malloc(image_bytes)) == NULL))
      {
          fprintf(stderr, "malloc of image failed
  ");
          exit(-1);
      }
  
      for (int i = 0; i < num_pixels; ++i)
      {
          RandomBits(pixels[i].x, entropy_reduction);
          RandomBits(pixels[i].y, entropy_reduction);
          RandomBits(pixels[i].z, entropy_reduction);
          RandomBits(pixels[i].w, entropy_reduction);
      }
  }
  
  
  
  //---------------------------------------------------------------------
  // Histogram verification
  //---------------------------------------------------------------------
  
  // Decode float4 pixel into bins
  template <int NUM_BINS, int ACTIVE_CHANNELS>
  void DecodePixelGold(float4 pixel, unsigned int (&bins)[ACTIVE_CHANNELS])
  {
      float* samples = reinterpret_cast<float*>(&pixel);
  
      for (int CHANNEL = 0; CHANNEL < ACTIVE_CHANNELS; ++CHANNEL)
          bins[CHANNEL] = (unsigned int) (samples[CHANNEL] * float(NUM_BINS));
  }
  
  // Decode uchar4 pixel into bins
  template <int NUM_BINS, int ACTIVE_CHANNELS>
  void DecodePixelGold(uchar4 pixel, unsigned int (&bins)[ACTIVE_CHANNELS])
  {
      unsigned char* samples = reinterpret_cast<unsigned char*>(&pixel);
  
      for (int CHANNEL = 0; CHANNEL < ACTIVE_CHANNELS; ++CHANNEL)
          bins[CHANNEL] = (unsigned int) (samples[CHANNEL]);
  }
  
  // Decode uchar1 pixel into bins
  template <int NUM_BINS, int ACTIVE_CHANNELS>
  void DecodePixelGold(uchar1 pixel, unsigned int (&bins)[ACTIVE_CHANNELS])
  {
      bins[0] = (unsigned int) pixel.x;
  }
  
  
  // Compute reference histogram.  Specialized for uchar4
  template <
      int         ACTIVE_CHANNELS,
      int         NUM_BINS,
      typename    PixelType>
  void HistogramGold(PixelType *image, int width, int height, unsigned int* hist)
  {
      memset(hist, 0, ACTIVE_CHANNELS * NUM_BINS * sizeof(unsigned int));
  
      for (int i = 0; i < width; i++)
      {
          for (int j = 0; j < height; j++)
          {
              PixelType pixel = image[i + j * width];
  
              unsigned int bins[ACTIVE_CHANNELS];
              DecodePixelGold<NUM_BINS>(pixel, bins);
  
              for (int CHANNEL = 0; CHANNEL < ACTIVE_CHANNELS; ++CHANNEL)
              {
                  hist[(NUM_BINS * CHANNEL) + bins[CHANNEL]]++;
              }
          }
      }
  }
  
  
  //---------------------------------------------------------------------
  // Test execution
  //---------------------------------------------------------------------
  
  /**
   * Run a specific histogram implementation
   */
  template <
      int         ACTIVE_CHANNELS,
      int         NUM_BINS,
      typename    PixelType>
  void RunTest(
      std::vector<std::pair<std::string, double> >&   timings,
      PixelType*                                      d_pixels,
      const int                                       width,
      const int                                       height,
      unsigned int *                                  d_hist,
      unsigned int *                                  h_hist,
      int                                             timing_iterations,
      const char *                                    long_name,
      const char *                                    short_name,
      double (*f)(PixelType*, int, int, unsigned int*, bool))
  {
      if (!g_report) printf("%s ", long_name); fflush(stdout);
  
      // Run single test to verify (and code cache)
      (*f)(d_pixels, width, height, d_hist, !g_report);
  
      int compare = CompareDeviceResults(h_hist, d_hist, ACTIVE_CHANNELS * NUM_BINS, true, g_verbose);
      if (!g_report) printf("\t%s
  ", compare ? "FAIL" : "PASS"); fflush(stdout);
  
      double elapsed_ms = 0;
      for (int i = 0; i < timing_iterations; i++)
      {
          elapsed_ms += (*f)(d_pixels, width, height, d_hist, false);
      }
      double avg_us = (elapsed_ms / timing_iterations) * 1000;    // average in us
      timings.push_back(std::pair<std::string, double>(short_name, avg_us));
  
      if (!g_report)
      {
          printf("Avg time %.3f us (%d iterations)
  ", avg_us, timing_iterations); fflush(stdout);
      }
      else
      {
          printf("%.3f, ", avg_us); fflush(stdout);
      }
  
      AssertEquals(0, compare);
  }
  
  
  /**
   * Evaluate corpus of histogram implementations
   */
  template <
      int         NUM_CHANNELS,
      int         ACTIVE_CHANNELS,
      int         NUM_BINS,
      typename    PixelType>
  void TestMethods(
      PixelType*  h_pixels,
      int         height,
      int         width,
      int         timing_iterations,
      double      bandwidth_GBs)
  {
      // Copy data to gpu
      PixelType* d_pixels;
      size_t pixel_bytes = width * height * sizeof(PixelType);
      CubDebugExit(g_allocator.DeviceAllocate((void**) &d_pixels, pixel_bytes));
      CubDebugExit(cudaMemcpy(d_pixels, h_pixels, pixel_bytes, cudaMemcpyHostToDevice));
  
      if (g_report) printf("%.3f, ", double(pixel_bytes) / bandwidth_GBs / 1000);
  
      // Allocate results arrays on cpu/gpu
      unsigned int *h_hist;
      unsigned int *d_hist;
      size_t histogram_bytes = NUM_BINS * ACTIVE_CHANNELS * sizeof(unsigned int);
      h_hist = (unsigned int *) malloc(histogram_bytes);
      g_allocator.DeviceAllocate((void **) &d_hist, histogram_bytes);
  
      // Compute reference cpu histogram
      HistogramGold<ACTIVE_CHANNELS, NUM_BINS>(h_pixels, width, height, h_hist);
  
      // Store timings
      std::vector<std::pair<std::string, double> > timings;
  
      // Run experiments
      RunTest<ACTIVE_CHANNELS, NUM_BINS>(timings, d_pixels, width, height, d_hist, h_hist, timing_iterations,
          "CUB", "CUB", run_cub_histogram<NUM_CHANNELS, ACTIVE_CHANNELS, NUM_BINS, PixelType>);
      RunTest<ACTIVE_CHANNELS, NUM_BINS>(timings, d_pixels, width, height, d_hist, h_hist, timing_iterations,
          "Shared memory atomics", "smem atomics", run_smem_atomics<ACTIVE_CHANNELS, NUM_BINS, PixelType>);
      RunTest<ACTIVE_CHANNELS, NUM_BINS>(timings, d_pixels, width, height, d_hist, h_hist, timing_iterations,
          "Global memory atomics", "gmem atomics", run_gmem_atomics<ACTIVE_CHANNELS, NUM_BINS, PixelType>);
  
      // Report timings
      if (!g_report)
      {
          std::sort(timings.begin(), timings.end(), less_than_value());
          printf("Timings (us):
  ");
          for (int i = 0; i < timings.size(); i++)
          {
              double bandwidth = height * width * sizeof(PixelType) / timings[i].second / 1000;
              printf("\t %.3f %s (%.3f GB/s, %.3f%% peak)
  ", timings[i].second, timings[i].first.c_str(), bandwidth, bandwidth / bandwidth_GBs * 100);
          }
          printf("
  ");
      }
  
      // Free data
      CubDebugExit(g_allocator.DeviceFree(d_pixels));
      CubDebugExit(g_allocator.DeviceFree(d_hist));
      free(h_hist);
  }
  
  
  /**
   * Test different problem genres
   */
  void TestGenres(
      uchar4*     uchar4_pixels,
      int         height,
      int         width,
      int         timing_iterations,
      double      bandwidth_GBs)
  {
      int num_pixels = width * height;
  
      {
          if (!g_report) printf("1 channel uchar1 tests (256-bin):
  
  "); fflush(stdout);
  
          size_t      image_bytes     = num_pixels * sizeof(uchar1);
          uchar1*     uchar1_pixels   = (uchar1*) malloc(image_bytes);
  
          // Convert to 1-channel (averaging first 3 channels)
          for (int i = 0; i < num_pixels; ++i)
          {
              uchar1_pixels[i].x = (unsigned char)
                  (((unsigned int) uchar4_pixels[i].x +
                    (unsigned int) uchar4_pixels[i].y +
                    (unsigned int) uchar4_pixels[i].z) / 3);
          }
  
          TestMethods<1, 1, 256>(uchar1_pixels, width, height, timing_iterations, bandwidth_GBs);
          free(uchar1_pixels);
          if (g_report) printf(", ");
      }
  
      {
          if (!g_report) printf("3/4 channel uchar4 tests (256-bin):
  
  "); fflush(stdout);
          TestMethods<4, 3, 256>(uchar4_pixels, width, height, timing_iterations, bandwidth_GBs);
          if (g_report) printf(", ");
      }
  
      {
          if (!g_report) printf("3/4 channel float4 tests (256-bin):
  
  "); fflush(stdout);
          size_t      image_bytes     = num_pixels * sizeof(float4);
          float4*     float4_pixels   = (float4*) malloc(image_bytes);
  
          // Convert to float4 with range [0.0, 1.0)
          for (int i = 0; i < num_pixels; ++i)
          {
              float4_pixels[i].x = float(uchar4_pixels[i].x) / 256;
              float4_pixels[i].y = float(uchar4_pixels[i].y) / 256;
              float4_pixels[i].z = float(uchar4_pixels[i].z) / 256;
              float4_pixels[i].w = float(uchar4_pixels[i].w) / 256;
          }
          TestMethods<4, 3, 256>(float4_pixels, width, height, timing_iterations, bandwidth_GBs);
          free(float4_pixels);
          if (g_report) printf("
  ");
      }
  }
  
  
  /**
   * Main
   */
  int main(int argc, char **argv)
  {
      // Initialize command line
      CommandLineArgs args(argc, argv);
      if (args.CheckCmdLineFlag("help"))
      {
          printf(
              "%s "
              "[--device=<device-id>] "
              "[--v] "
              "[--i=<timing iterations>] "
              "
  \t"
                  "--file=<.tga filename> "
              "
  \t"
                  "--entropy=<-1 (0%), 0 (100%), 1 (81%), 2 (54%), 3 (34%), 4 (20%), ..."
                  "[--height=<default: 1080>] "
                  "[--width=<default: 1920>] "
              "
  ", argv[0]);
          exit(0);
      }
  
      std::string         filename;
      int                 timing_iterations   = 100;
      int                 entropy_reduction   = 0;
      int                 height              = 1080;
      int                 width               = 1920;
  
      g_verbose = args.CheckCmdLineFlag("v");
      g_report = args.CheckCmdLineFlag("report");
      args.GetCmdLineArgument("i", timing_iterations);
      args.GetCmdLineArgument("file", filename);
      args.GetCmdLineArgument("height", height);
      args.GetCmdLineArgument("width", width);
      args.GetCmdLineArgument("entropy", entropy_reduction);
  
      // Initialize device
      CubDebugExit(args.DeviceInit());
  
      // Get GPU device bandwidth (GB/s)
      int device_ordinal, bus_width, mem_clock_khz;
      CubDebugExit(cudaGetDevice(&device_ordinal));
      CubDebugExit(cudaDeviceGetAttribute(&bus_width, cudaDevAttrGlobalMemoryBusWidth, device_ordinal));
      CubDebugExit(cudaDeviceGetAttribute(&mem_clock_khz, cudaDevAttrMemoryClockRate, device_ordinal));
      double bandwidth_GBs = double(bus_width) * mem_clock_khz * 2 / 8 / 1000 / 1000;
  
      // Run test(s)
      uchar4* uchar4_pixels = NULL;
      if (!g_report)
      {
          if (!filename.empty())
          {
              // Parse targa file
              ReadTga(uchar4_pixels, width, height, filename.c_str());
              printf("File %s: width(%d) height(%d)
  
  ", filename.c_str(), width, height); fflush(stdout);
          }
          else
          {
              // Generate image
              GenerateRandomImage(uchar4_pixels, width, height, entropy_reduction);
              printf("Random image: entropy-reduction(%d) width(%d) height(%d)
  
  ", entropy_reduction, width, height); fflush(stdout);
          }
  
          TestGenres(uchar4_pixels, height, width, timing_iterations, bandwidth_GBs);
      }
      else
      {
          // Run test suite
          printf("Test, MIN, RLE CUB, SMEM, GMEM, , MIN, RLE_CUB, SMEM, GMEM, , MIN, RLE_CUB, SMEM, GMEM
  ");
  
          // Entropy reduction tests
          for (entropy_reduction = 0; entropy_reduction < 5; ++entropy_reduction)
          {
              printf("entropy reduction %d, ", entropy_reduction);
              GenerateRandomImage(uchar4_pixels, width, height, entropy_reduction);
              TestGenres(uchar4_pixels, height, width, timing_iterations, bandwidth_GBs);
          }
          printf("entropy reduction -1, ");
          GenerateRandomImage(uchar4_pixels, width, height, -1);
          TestGenres(uchar4_pixels, height, width, timing_iterations, bandwidth_GBs);
          printf("
  ");
  
          // File image tests
          std::vector<std::string> file_tests;
          file_tests.push_back("animals");
          file_tests.push_back("apples");
          file_tests.push_back("sunset");
          file_tests.push_back("cheetah");
          file_tests.push_back("nature");
          file_tests.push_back("operahouse");
          file_tests.push_back("austin");
          file_tests.push_back("cityscape");
  
          for (int i = 0; i < file_tests.size(); ++i)
          {
              printf("%s, ", file_tests[i].c_str());
              std::string filename = std::string("histogram/benchmark/") + file_tests[i] + ".tga";
              ReadTga(uchar4_pixels, width, height, filename.c_str());
              TestGenres(uchar4_pixels, height, width, timing_iterations, bandwidth_GBs);
          }
      }
  
      free(uchar4_pixels);
  
      CubDebugExit(cudaDeviceSynchronize());
      printf("
  
  ");
  
      return 0;
  }