Blame view

tools/cub-1.8.0/test/half.h 8.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
  /******************************************************************************
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are not permitted.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  #pragma once
  
  /**
   * \file
   * Utilities for interacting with the opaque CUDA __half type
   */
  
  #include <stdint.h>
  #include <cuda_fp16.h>
  #include <iosfwd>
  
  #include <cub/util_type.cuh>
  
  
  /******************************************************************************
   * half_t
   ******************************************************************************/
  
  /**
   * Host-based fp16 data type compatible and convertible with __half
   */
  struct half_t
  {
      uint16_t __x;
  
      /// Constructor from __half
      __host__ __device__ __forceinline__
      half_t(const __half &other)
      {
          __x = reinterpret_cast<const uint16_t&>(other);
      }
  
      /// Constructor from integer
      __host__ __device__ __forceinline__
      half_t(int a)
      {
          *this = half_t(float(a));
      }
  
      /// Default constructor
      __host__ __device__ __forceinline__
      half_t() : __x(0)
      {}
  
      /// Constructor from float
      __host__ __device__ __forceinline__
      half_t(float a)
      {
          // Stolen from Norbert Juffa
          uint32_t ia = *reinterpret_cast<uint32_t*>(&a);
          uint16_t ir;
  
          ir = (ia >> 16) & 0x8000;
  
          if ((ia & 0x7f800000) == 0x7f800000)
          {
              if ((ia & 0x7fffffff) == 0x7f800000)
              {
                  ir |= 0x7c00; /* infinity */
              }
              else
              {
                  ir = 0x7fff; /* canonical NaN */
              }
          }
          else if ((ia & 0x7f800000) >= 0x33000000)
          {
              int32_t shift = (int32_t) ((ia >> 23) & 0xff) - 127;
              if (shift > 15)
              {
                  ir |= 0x7c00; /* infinity */
              }
              else
              {
                  ia = (ia & 0x007fffff) | 0x00800000; /* extract mantissa */
                  if (shift < -14)
                  { /* denormal */
                      ir |= ia >> (-1 - shift);
                      ia = ia << (32 - (-1 - shift));
                  }
                  else
                  { /* normal */
                      ir |= ia >> (24 - 11);
                      ia = ia << (32 - (24 - 11));
                      ir = ir + ((14 + shift) << 10);
                  }
                  /* IEEE-754 round to nearest of even */
                  if ((ia > 0x80000000) || ((ia == 0x80000000) && (ir & 1)))
                  {
                      ir++;
                  }
              }
          }
  
          this->__x = ir;
      }
  
      /// Cast to __half
      __host__ __device__ __forceinline__
      operator __half() const
      {
          return reinterpret_cast<const __half&>(__x);
      }
  
      /// Cast to float
      __host__ __device__ __forceinline__
      operator float() const
      {
          // Stolen from Andrew Kerr
  
          int sign        = ((this->__x >> 15) & 1);
          int exp         = ((this->__x >> 10) & 0x1f);
          int mantissa    = (this->__x & 0x3ff);
          uint32_t f      = 0;
  
          if (exp > 0 && exp < 31)
          {
              // normal
              exp += 112;
              f = (sign << 31) | (exp << 23) | (mantissa << 13);
          }
          else if (exp == 0)
          {
              if (mantissa)
              {
                  // subnormal
                  exp += 113;
                  while ((mantissa & (1 << 10)) == 0)
                  {
                      mantissa <<= 1;
                      exp--;
                  }
                  mantissa &= 0x3ff;
                  f = (sign << 31) | (exp << 23) | (mantissa << 13);
              }
              else if (sign)
              {
                  f = 0x80000000; // negative zero
              }
              else
              {
                  f = 0x0;        // zero
              }
          }
          else if (exp == 31)
          {
              if (mantissa)
              {
                  f = 0x7fffffff;     // not a number
              }
              else
              {
                  f = (0xff << 23) | (sign << 31);    //  inf
              }
          }
          return *reinterpret_cast<float const *>(&f);
      }
  
  
      /// Get raw storage
      __host__ __device__ __forceinline__
      uint16_t raw()
      {
          return this->__x;
      }
  
      /// Equality
      __host__ __device__ __forceinline__
      bool operator ==(const half_t &other)
      {
          return (this->__x == other.__x);
      }
  
      /// Inequality
      __host__ __device__ __forceinline__
      bool operator !=(const half_t &other)
      {
          return (this->__x != other.__x);
      }
  
      /// Assignment by sum
      __host__ __device__ __forceinline__
      half_t& operator +=(const half_t &rhs)
      {
          *this = half_t(float(*this) + float(rhs));
          return *this;
      }
  
      /// Multiply
      __host__ __device__ __forceinline__
      half_t operator*(const half_t &other)
      {
          return half_t(float(*this) * float(other));
      }
  
      /// Add
      __host__ __device__ __forceinline__
      half_t operator+(const half_t &other)
      {
          return half_t(float(*this) + float(other));
      }
  
      /// Less-than
      __host__ __device__ __forceinline__
      bool operator<(const half_t &other) const
      {
          return float(*this) < float(other);
      }
  
      /// Less-than-equal
      __host__ __device__ __forceinline__
      bool operator<=(const half_t &other) const
      {
          return float(*this) <= float(other);
      }
  
      /// Greater-than
      __host__ __device__ __forceinline__
      bool operator>(const half_t &other) const
      {
          return float(*this) > float(other);
      }
  
      /// Greater-than-equal
      __host__ __device__ __forceinline__
      bool operator>=(const half_t &other) const
      {
          return float(*this) >= float(other);
      }
  
      /// numeric_traits<half_t>::max
      __host__ __device__ __forceinline__
      static half_t max() {
          uint16_t max_word = 0x7BFF;
          return reinterpret_cast<half_t&>(max_word);
      }
  
      /// numeric_traits<half_t>::lowest
      __host__ __device__ __forceinline__
      static half_t lowest() {
          uint16_t lowest_word = 0xFBFF;
          return reinterpret_cast<half_t&>(lowest_word);
      }
  };
  
  
  /******************************************************************************
   * I/O stream overloads
   ******************************************************************************/
  
  /// Insert formatted \p half_t into the output stream
  std::ostream& operator<<(std::ostream &out, const half_t &x)
  {
      out << (float)x;
      return out;
  }
  
  
  /// Insert formatted \p __half into the output stream
  std::ostream& operator<<(std::ostream &out, const __half &x)
  {
      return out << half_t(x);
  }
  
  
  /******************************************************************************
   * Traits overloads
   ******************************************************************************/
  
  template <>
  struct cub::FpLimits<half_t>
  {
      static __host__ __device__ __forceinline__ half_t Max() { return half_t::max(); }
  
      static __host__ __device__ __forceinline__ half_t Lowest() { return half_t::lowest(); }
  };
  
  template <> struct cub::NumericTraits<half_t> : cub::BaseTraits<FLOATING_POINT, true, false, unsigned short, half_t> {};