Blame view

tools/cub-1.8.0/test/test_block_radix_sort.cu 24.8 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /******************************************************************************
   * Test of BlockRadixSort utilities
   ******************************************************************************/
  
  // Ensure printing of CUDA runtime errors to console
  #define CUB_STDERR
  
  #include <stdio.h>
  #include <algorithm>
  #include <iostream>
  
  #include <cub/block/block_radix_sort.cuh>
  #include <cub/block/block_load.cuh>
  #include <cub/block/block_store.cuh>
  #include <cub/util_allocator.cuh>
  
  #include "test_util.h"
  
  using namespace cub;
  
  //---------------------------------------------------------------------
  // Globals, constants and typedefs
  //---------------------------------------------------------------------
  
  bool                    g_verbose = false;
  CachingDeviceAllocator  g_allocator(true);
  
  
  //---------------------------------------------------------------------
  // Test kernels
  //---------------------------------------------------------------------
  
  
  /// Specialized descending, blocked -> blocked
  template <int BLOCK_THREADS, typename BlockRadixSort, int ITEMS_PER_THREAD, typename Key, typename Value>
  __device__ __forceinline__ void TestBlockSort(
      typename BlockRadixSort::TempStorage &temp_storage,
      Key                         (&keys)[ITEMS_PER_THREAD],
      Value                       (&values)[ITEMS_PER_THREAD],
      Key                         *d_keys,
      Value                       *d_values,
      int                         begin_bit,
      int                         end_bit,
      clock_t                     &stop,
      Int2Type<true>              is_descending,
      Int2Type<true>              is_blocked_output)
  {
      BlockRadixSort(temp_storage).SortDescending(keys, values, begin_bit, end_bit);
      stop = clock();
      StoreDirectBlocked(threadIdx.x, d_keys, keys);
      StoreDirectBlocked(threadIdx.x, d_values, values);
  }
  
  /// Specialized descending, blocked -> striped
  template <int BLOCK_THREADS, typename BlockRadixSort, int ITEMS_PER_THREAD, typename Key, typename Value>
  __device__ __forceinline__ void TestBlockSort(
      typename BlockRadixSort::TempStorage &temp_storage,
      Key                         (&keys)[ITEMS_PER_THREAD],
      Value                       (&values)[ITEMS_PER_THREAD],
      Key                         *d_keys,
      Value                       *d_values,
      int                         begin_bit,
      int                         end_bit,
      clock_t                     &stop,
      Int2Type<true>              is_descending,
      Int2Type<false>             is_blocked_output)
  {
      BlockRadixSort(temp_storage).SortDescendingBlockedToStriped(keys, values, begin_bit, end_bit);
      stop = clock();
      StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_keys, keys);
      StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_values, values);
  }
  
  /// Specialized ascending, blocked -> blocked
  template <int BLOCK_THREADS, typename BlockRadixSort, int ITEMS_PER_THREAD, typename Key, typename Value>
  __device__ __forceinline__ void TestBlockSort(
      typename BlockRadixSort::TempStorage &temp_storage,
      Key                         (&keys)[ITEMS_PER_THREAD],
      Value                       (&values)[ITEMS_PER_THREAD],
      Key                         *d_keys,
      Value                       *d_values,
      int                         begin_bit,
      int                         end_bit,
      clock_t                     &stop,
      Int2Type<false>             is_descending,
      Int2Type<true>              is_blocked_output)
  {
      BlockRadixSort(temp_storage).Sort(keys, values, begin_bit, end_bit);
      stop = clock();
      StoreDirectBlocked(threadIdx.x, d_keys, keys);
      StoreDirectBlocked(threadIdx.x, d_values, values);
  }
  
  /// Specialized ascending, blocked -> striped
  template <int BLOCK_THREADS, typename BlockRadixSort, int ITEMS_PER_THREAD, typename Key, typename Value>
  __device__ __forceinline__ void TestBlockSort(
      typename BlockRadixSort::TempStorage &temp_storage,
      Key                         (&keys)[ITEMS_PER_THREAD],
      Value                       (&values)[ITEMS_PER_THREAD],
      Key                         *d_keys,
      Value                       *d_values,
      int                         begin_bit,
      int                         end_bit,
      clock_t                     &stop,
      Int2Type<false>             is_descending,
      Int2Type<false>             is_blocked_output)
  {
      BlockRadixSort(temp_storage).SortBlockedToStriped(keys, values, begin_bit, end_bit);
      stop = clock();
      StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_keys, keys);
      StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_values, values);
  }
  
  
  
  /**
   * BlockRadixSort kernel
   */
  template <
      int                 BLOCK_THREADS,
      int                 ITEMS_PER_THREAD,
      int                 RADIX_BITS,
      bool                MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm  INNER_SCAN_ALGORITHM,
      cudaSharedMemConfig SMEM_CONFIG,
      int                 DESCENDING,
      int                 BLOCKED_OUTPUT,
      typename            Key,
      typename            Value>
  __launch_bounds__ (BLOCK_THREADS, 1)
  __global__ void Kernel(
      Key                         *d_keys,
      Value                       *d_values,
      int                         begin_bit,
      int                         end_bit,
      clock_t                     *d_elapsed)
  {
      // Threadblock load/store abstraction types
      typedef BlockRadixSort<
              Key,
              BLOCK_THREADS,
              ITEMS_PER_THREAD,
              Value,
              RADIX_BITS,
              MEMOIZE_OUTER_SCAN,
              INNER_SCAN_ALGORITHM,
              SMEM_CONFIG>
          BlockRadixSortT;
  
      // Allocate temp storage in shared memory
      __shared__ typename BlockRadixSortT::TempStorage temp_storage;
  
      // Items per thread
      Key     keys[ITEMS_PER_THREAD];
      Value   values[ITEMS_PER_THREAD];
  
      LoadDirectBlocked(threadIdx.x, d_keys, keys);
      LoadDirectBlocked(threadIdx.x, d_values, values);
  
      // Start cycle timer
      clock_t stop;
      clock_t start = clock();
  
      TestBlockSort<BLOCK_THREADS, BlockRadixSortT>(
          temp_storage, keys, values, d_keys, d_values, begin_bit, end_bit, stop, Int2Type<DESCENDING>(), Int2Type<BLOCKED_OUTPUT>());
  
      // Store time
      if (threadIdx.x == 0)
          *d_elapsed = (start > stop) ? start - stop : stop - start;
  }
  
  
  
  //---------------------------------------------------------------------
  // Host testing subroutines
  //---------------------------------------------------------------------
  
  
  /**
   * Simple key-value pairing
   */
  template <
      typename Key,
      typename Value,
      bool IS_FLOAT = (Traits<Key>::CATEGORY == FLOATING_POINT)>
  struct Pair
  {
      Key     key;
      Value   value;
  
      bool operator<(const Pair &b) const
      {
          return (key < b.key);
      }
  };
  
  /**
   * Simple key-value pairing (specialized for floating point types)
   */
  template <typename Key, typename Value>
  struct Pair<Key, Value, true>
  {
      Key     key;
      Value   value;
  
      bool operator<(const Pair &b) const
      {
          if (key < b.key)
              return true;
  
          if (key > b.key)
              return false;
  
          // Key in unsigned bits
          typedef typename Traits<Key>::UnsignedBits UnsignedBits;
  
          // Return true if key is negative zero and b.key is positive zero
          UnsignedBits key_bits   = *reinterpret_cast<UnsignedBits*>(const_cast<Key*>(&key));
          UnsignedBits b_key_bits = *reinterpret_cast<UnsignedBits*>(const_cast<Key*>(&b.key));
          UnsignedBits HIGH_BIT   = Traits<Key>::HIGH_BIT;
  
          return ((key_bits & HIGH_BIT) != 0) && ((b_key_bits & HIGH_BIT) == 0);
      }
  };
  
  
  /**
   * Initialize key-value sorting problem.
   */
  template <bool DESCENDING, typename Key, typename Value>
  void Initialize(
      GenMode         gen_mode,
      Key             *h_keys,
      Value           *h_values,
      Key             *h_reference_keys,
      Value           *h_reference_values,
      int             num_items,
      int             entropy_reduction,
      int             begin_bit,
      int             end_bit)
  {
      Pair<Key, Value> *h_pairs = new Pair<Key, Value>[num_items];
  
      for (int i = 0; i < num_items; ++i)
      {
          InitValue(gen_mode, h_keys[i], i);
  
          RandomBits(h_values[i]);
  
          // Mask off unwanted portions
          int num_bits = end_bit - begin_bit;
          if ((begin_bit > 0) || (end_bit < sizeof(Key) * 8))
          {
              unsigned long long base = 0;
              memcpy(&base, &h_keys[i], sizeof(Key));
              base &= ((1ull << num_bits) - 1) << begin_bit;
              memcpy(&h_keys[i], &base, sizeof(Key));
          }
  
          h_pairs[i].key    = h_keys[i];
          h_pairs[i].value  = h_values[i];
      }
  
      if (DESCENDING) std::reverse(h_pairs, h_pairs + num_items);
      std::stable_sort(h_pairs, h_pairs + num_items);
      if (DESCENDING) std::reverse(h_pairs, h_pairs + num_items);
  
      for (int i = 0; i < num_items; ++i)
      {
          h_reference_keys[i]     = h_pairs[i].key;
          h_reference_values[i]   = h_pairs[i].value;
      }
  
      delete[] h_pairs;
  }
  
  
  
  
  /**
   * Test BlockRadixSort kernel
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM,
      cudaSharedMemConfig     SMEM_CONFIG,
      bool                    DESCENDING,
      bool                    BLOCKED_OUTPUT,
      typename                Key,
      typename                Value>
  void TestDriver(
      GenMode                 gen_mode,
      int                     entropy_reduction,
      int                     begin_bit,
      int                     end_bit)
  {
      enum
      {
          TILE_SIZE = BLOCK_THREADS * ITEMS_PER_THREAD,
          KEYS_ONLY = Equals<Value, NullType>::VALUE,
      };
  
      // Allocate host arrays
      Key     *h_keys             = new Key[TILE_SIZE];
      Key     *h_reference_keys   = new Key[TILE_SIZE];
      Value   *h_values           = new Value[TILE_SIZE];
      Value   *h_reference_values = new Value[TILE_SIZE];
  
      // Allocate device arrays
      Key     *d_keys     = NULL;
      Value   *d_values   = NULL;
      clock_t *d_elapsed  = NULL;
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys, sizeof(Key) * TILE_SIZE));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values, sizeof(Value) * TILE_SIZE));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_elapsed, sizeof(clock_t)));
  
      // Initialize problem and solution on host
      Initialize<DESCENDING>(gen_mode, h_keys, h_values, h_reference_keys, h_reference_values,
          TILE_SIZE, entropy_reduction, begin_bit, end_bit);
  
      // Copy problem to device
      CubDebugExit(cudaMemcpy(d_keys, h_keys, sizeof(Key) * TILE_SIZE, cudaMemcpyHostToDevice));
      CubDebugExit(cudaMemcpy(d_values, h_values, sizeof(Value) * TILE_SIZE, cudaMemcpyHostToDevice));
  
      printf("%s "
          "BLOCK_THREADS(%d) "
          "ITEMS_PER_THREAD(%d) "
          "RADIX_BITS(%d) "
          "MEMOIZE_OUTER_SCAN(%d) "
          "INNER_SCAN_ALGORITHM(%d) "
          "SMEM_CONFIG(%d) "
          "DESCENDING(%d) "
          "BLOCKED_OUTPUT(%d) "
          "sizeof(Key)(%d) "
          "sizeof(Value)(%d) "
          "gen_mode(%d), "
          "entropy_reduction(%d) "
          "begin_bit(%d) "
          "end_bit(%d), "
          "samples(%d)
  ",
              ((KEYS_ONLY) ? "Keys-only" : "Key-value"),
              BLOCK_THREADS,
              ITEMS_PER_THREAD,
              RADIX_BITS,
              MEMOIZE_OUTER_SCAN,
              INNER_SCAN_ALGORITHM,
              SMEM_CONFIG,
              DESCENDING,
              BLOCKED_OUTPUT,
              (int) sizeof(Key),
              (int) sizeof(Value),
              gen_mode,
              entropy_reduction,
              begin_bit,
              end_bit,
              g_num_rand_samples);
  
      // Set shared memory config
      cudaDeviceSetSharedMemConfig(SMEM_CONFIG);
  
      // Run kernel
      Kernel<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, DESCENDING, BLOCKED_OUTPUT><<<1, BLOCK_THREADS>>>(
          d_keys, d_values, begin_bit, end_bit, d_elapsed);
  
      // Flush kernel output / errors
      CubDebugExit(cudaPeekAtLastError());
      CubDebugExit(cudaDeviceSynchronize());
  
      // Check keys results
      printf("\tKeys: ");
      int compare = CompareDeviceResults(h_reference_keys, d_keys, TILE_SIZE, g_verbose, g_verbose);
      printf("%s
  ", compare ? "FAIL" : "PASS");
      AssertEquals(0, compare);
  
      // Check value results
      if (!KEYS_ONLY)
      {
          printf("\tValues: ");
          int compare = CompareDeviceResults(h_reference_values, d_values, TILE_SIZE, g_verbose, g_verbose);
          printf("%s
  ", compare ? "FAIL" : "PASS");
          AssertEquals(0, compare);
      }
      printf("
  ");
  
      printf("\tElapsed clocks: ");
      DisplayDeviceResults(d_elapsed, 1);
      printf("
  ");
  
      // Cleanup
      if (h_keys)             delete[] h_keys;
      if (h_reference_keys)   delete[] h_reference_keys;
      if (h_values)           delete[] h_values;
      if (h_reference_values) delete[] h_reference_values;
      if (d_keys)             CubDebugExit(g_allocator.DeviceFree(d_keys));
      if (d_values)           CubDebugExit(g_allocator.DeviceFree(d_values));
      if (d_elapsed)          CubDebugExit(g_allocator.DeviceFree(d_elapsed));
  }
  
  
  /**
   * Test driver (valid tile size <= MAX_SMEM_BYTES)
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM,
      cudaSharedMemConfig     SMEM_CONFIG,
      bool                    DESCENDING,
      bool                    BLOCKED_OUTPUT,
      typename                Key,
      typename                Value>
  void TestValid(Int2Type<true> fits_smem_capacity)
  {
      // Iterate begin_bit
      for (int begin_bit = 0; begin_bit <= 1; begin_bit++)
      {
          // Iterate end bit
          for (int end_bit = begin_bit + 1; end_bit <= sizeof(Key) * 8; end_bit = end_bit * 2 + begin_bit)
          {
              // Uniform key distribution
              TestDriver<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, DESCENDING, BLOCKED_OUTPUT, Key, Value>(
                  UNIFORM, 0, begin_bit, end_bit);
  
              // Sequential key distribution
              TestDriver<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, DESCENDING, BLOCKED_OUTPUT, Key, Value>(
                  INTEGER_SEED, 0, begin_bit, end_bit);
  
              // Iterate random with entropy_reduction
              for (int entropy_reduction = 0; entropy_reduction <= 9; entropy_reduction += 3)
              {
                  TestDriver<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, DESCENDING, BLOCKED_OUTPUT, Key, Value>(
                      RANDOM, entropy_reduction, begin_bit, end_bit);
              }
          }
      }
  }
  
  
  /**
   * Test driver (invalid tile size)
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM,
      cudaSharedMemConfig     SMEM_CONFIG,
      bool                    DESCENDING,
      bool                    BLOCKED_OUTPUT,
      typename                Key,
      typename                Value>
  void TestValid(Int2Type<false> fits_smem_capacity)
  {}
  
  
  /**
   * Test ascending/descending and to-blocked/to-striped
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM,
      cudaSharedMemConfig     SMEM_CONFIG,
      typename                Key,
      typename                Value>
  void Test()
  {
      // Check size of smem storage for the target arch to make sure it will fit
      typedef BlockRadixSort<Key, BLOCK_THREADS, ITEMS_PER_THREAD, Value, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG> BlockRadixSortT;
  
  #if defined(SM100) || defined(SM110) || defined(SM130)
      Int2Type<sizeof(typename BlockRadixSortT::TempStorage) <= 16 * 1024> fits_smem_capacity;
  #else
      Int2Type<(sizeof(typename BlockRadixSortT::TempStorage) <= 48 * 1024)> fits_smem_capacity;
  #endif
  
      // Sort-ascending, to-striped
      TestValid<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, true, false, Key, Value>(fits_smem_capacity);
  
      // Sort-descending, to-blocked
      TestValid<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, false, true, Key, Value>(fits_smem_capacity);
  
      // Not necessary
  //    TestValid<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, false, false, Key, Value>(fits_smem_capacity);
  //    TestValid<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, SMEM_CONFIG, true, true, Key, Value>(fits_smem_capacity);
  }
  
  
  /**
   * Test value type and smem config
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM,
      typename                Key>
  void TestKeys()
  {
      // Test keys-only sorting with both smem configs
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, cudaSharedMemBankSizeFourByte, Key, NullType>();    // Keys-only (4-byte smem bank config)
  #if !defined(SM100) && !defined(SM110) && !defined(SM130) && !defined(SM200)
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, cudaSharedMemBankSizeEightByte, Key, NullType>();   // Keys-only (8-byte smem bank config)
  #endif
  }
  
  
  /**
   * Test value type and smem config
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM,
      typename                Key>
  void TestKeysAndPairs()
  {
      // Test pairs sorting with only 4-byte configs
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, cudaSharedMemBankSizeFourByte, Key, char>();        // With small-values
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, cudaSharedMemBankSizeFourByte, Key, Key>();         // With same-values
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, cudaSharedMemBankSizeFourByte, Key, TestFoo>();     // With large values
  }
  
  
  /**
   * Test key type
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN,
      BlockScanAlgorithm      INNER_SCAN_ALGORITHM>
  void Test()
  {
      // Get ptx version
      int ptx_version;
      CubDebugExit(PtxVersion(ptx_version));
  
  #ifdef TEST_KEYS_ONLY
  
      // Test unsigned types with keys-only
      TestKeys<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, unsigned char>();
      TestKeys<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, unsigned short>();
      TestKeys<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, unsigned int>();
      TestKeys<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, unsigned long>();
      TestKeys<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, unsigned long long>();
  
  #else
  
      // Test signed and fp types with paired values
      TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, char>();
      TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, short>();
      TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, int>();
      TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, long>();
      TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, long long>();
      TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, float>();
      if (ptx_version > 120)
      {
          // Don't check doubles on PTX120 or below because they're down-converted
          TestKeysAndPairs<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, INNER_SCAN_ALGORITHM, double>();
      }
  
  #endif
  }
  
  
  /**
   * Test inner scan algorithm
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS,
      bool                    MEMOIZE_OUTER_SCAN>
  void Test()
  {
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, BLOCK_SCAN_RAKING>();
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, MEMOIZE_OUTER_SCAN, BLOCK_SCAN_WARP_SCANS>();
  }
  
  
  /**
   * Test outer scan algorithm
   */
  template <
      int                     BLOCK_THREADS,
      int                     ITEMS_PER_THREAD,
      int                     RADIX_BITS>
  void Test()
  {
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, true>();
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, RADIX_BITS, false>();
  }
  
  
  /**
   * Test radix bits
   */
  template <
      int BLOCK_THREADS,
      int ITEMS_PER_THREAD>
  void Test()
  {
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, 1>();
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, 2>();
      Test<BLOCK_THREADS, ITEMS_PER_THREAD, 5>();
  }
  
  
  /**
   * Test items per thread
   */
  template <int BLOCK_THREADS>
  void Test()
  {
      Test<BLOCK_THREADS, 1>();
  #if defined(SM100) || defined(SM110) || defined(SM130)
      // Open64 compiler can't handle the number of test cases
  #else
      Test<BLOCK_THREADS, 4>();
  #endif
      Test<BLOCK_THREADS, 11>();
  }
  
  
  
  /**
   * Main
   */
  int main(int argc, char** argv)
  {
      // Initialize command line
      CommandLineArgs args(argc, argv);
      g_verbose = args.CheckCmdLineFlag("v");
  
      // Print usage
      if (args.CheckCmdLineFlag("help"))
      {
          printf("%s "
              "[--device=<device-id>] "
              "[--v] "
              "
  ", argv[0]);
          exit(0);
      }
  
      // Initialize device
      CubDebugExit(args.DeviceInit());
  
  #ifdef QUICK_TEST
  
      {
          typedef float T;
          TestDriver<32, 4, 4, true, BLOCK_SCAN_WARP_SCANS, cudaSharedMemBankSizeFourByte, false, false, T, NullType>(INTEGER_SEED, 0, 0, sizeof(T) * 8);
      }
  /*
      // Compile/run quick tests
      typedef unsigned int T;
      TestDriver<64, 17, 4, true, BLOCK_SCAN_WARP_SCANS, cudaSharedMemBankSizeFourByte, false, false, T, NullType>(RANDOM, 0, 0, sizeof(T) * 8);
      TestDriver<96, 8, 4, true, BLOCK_SCAN_WARP_SCANS, cudaSharedMemBankSizeFourByte, false, false, T, NullType>(RANDOM, 0, 0, sizeof(T) * 8);
      TestDriver<128, 2, 4, true, BLOCK_SCAN_WARP_SCANS, cudaSharedMemBankSizeFourByte, false, false, T, NullType>(RANDOM, 0, 0, sizeof(T) * 8);
  */
  
  #else
  
      // Compile/run thorough tests
      Test<32>();
      Test<64>();
      Test<160>();
  
  
  #endif  // QUICK_TEST
  
      return 0;
  }