Blame view

tools/cub-1.8.0/test/test_device_radix_sort.cu 45.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /******************************************************************************
   * Test of DeviceRadixSort utilities
   ******************************************************************************/
  
  // Ensure printing of CUDA runtime errors to console
  #define CUB_STDERR
  
  #include <stdio.h>
  #include <algorithm>
  #include <typeinfo>
  
  #if (__CUDACC_VER_MAJOR__ >= 9)
      #include <cuda_fp16.h>
  #endif
  
  #include <cub/util_allocator.cuh>
  #include <cub/device/device_radix_sort.cuh>
  #include <cub/device/device_segmented_radix_sort.cuh>
  
  #include "test_util.h"
  
  #include <thrust/device_ptr.h>
  #include <thrust/sort.h>
  #include <thrust/reverse.h>
  
  using namespace cub;
  
  
  //---------------------------------------------------------------------
  // Globals, constants and typedefs
  //---------------------------------------------------------------------
  
  bool                    g_verbose           = false;
  int                     g_timing_iterations = 0;
  int                     g_repeat            = 0;
  CachingDeviceAllocator  g_allocator(true);
  
  // Dispatch types
  enum Backend
  {
      CUB,                        // CUB method (allows overwriting of input)
      CUB_NO_OVERWRITE,           // CUB method (disallows overwriting of input)
  
      CUB_SEGMENTED,              // CUB method (allows overwriting of input)
      CUB_SEGMENTED_NO_OVERWRITE, // CUB method (disallows overwriting of input)
  
      THRUST,                     // Thrust method
      CDP,                        // GPU-based (dynamic parallelism) dispatch to CUB method
  };
  
  
  //---------------------------------------------------------------------
  // Dispatch to different DeviceRadixSort entrypoints
  //---------------------------------------------------------------------
  
  /**
   * Dispatch to CUB sorting entrypoint (specialized for ascending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<false>         is_descending,
      Int2Type<CUB>           dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      return DeviceRadixSort::SortPairs(
          d_temp_storage, temp_storage_bytes,
          d_keys, d_values,
          num_items, begin_bit, end_bit, stream, debug_synchronous);
  }
  
  /**
   * Dispatch to CUB_NO_OVERWRITE sorting entrypoint (specialized for ascending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<false>             is_descending,
      Int2Type<CUB_NO_OVERWRITE>  dispatch_to,
      int                         *d_selector,
      size_t                      *d_temp_storage_bytes,
      cudaError_t                 *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      KeyT      const *const_keys_itr     = d_keys.Current();
      ValueT    const *const_values_itr   = d_values.Current();
  
      cudaError_t retval = DeviceRadixSort::SortPairs(
          d_temp_storage, temp_storage_bytes,
          const_keys_itr, d_keys.Alternate(), const_values_itr, d_values.Alternate(),
          num_items, begin_bit, end_bit, stream, debug_synchronous);
  
      d_keys.selector ^= 1;
      d_values.selector ^= 1;
      return retval;
  }
  
  /**
   * Dispatch to CUB sorting entrypoint (specialized for descending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<true>          is_descending,
      Int2Type<CUB>           dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      return DeviceRadixSort::SortPairsDescending(
          d_temp_storage, temp_storage_bytes,
          d_keys, d_values,
          num_items, begin_bit, end_bit, stream, debug_synchronous);
  }
  
  
  /**
   * Dispatch to CUB_NO_OVERWRITE sorting entrypoint (specialized for descending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<true>              is_descending,
      Int2Type<CUB_NO_OVERWRITE>  dispatch_to,
      int                         *d_selector,
      size_t                      *d_temp_storage_bytes,
      cudaError_t                 *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      KeyT      const *const_keys_itr     = d_keys.Current();
      ValueT    const *const_values_itr   = d_values.Current();
  
      cudaError_t retval = DeviceRadixSort::SortPairsDescending(
          d_temp_storage, temp_storage_bytes,
          const_keys_itr, d_keys.Alternate(), const_values_itr, d_values.Alternate(),
          num_items, begin_bit, end_bit, stream, debug_synchronous);
  
      d_keys.selector ^= 1;
      d_values.selector ^= 1;
      return retval;
  }
  
  //---------------------------------------------------------------------
  // Dispatch to different DeviceRadixSort entrypoints
  //---------------------------------------------------------------------
  
  /**
   * Dispatch to CUB_SEGMENTED sorting entrypoint (specialized for ascending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<false>         is_descending,
      Int2Type<CUB_SEGMENTED> dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      return DeviceSegmentedRadixSort::SortPairs(
          d_temp_storage, temp_storage_bytes,
          d_keys, d_values,
          num_items, num_segments, d_segment_offsets, d_segment_offsets + 1,
          begin_bit, end_bit, stream, debug_synchronous);
  }
  
  /**
   * Dispatch to CUB_SEGMENTED_NO_OVERWRITE sorting entrypoint (specialized for ascending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<false>                         is_descending,
      Int2Type<CUB_SEGMENTED_NO_OVERWRITE>    dispatch_to,
      int                                     *d_selector,
      size_t                                  *d_temp_storage_bytes,
      cudaError_t                             *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      KeyT      const *const_keys_itr     = d_keys.Current();
      ValueT    const *const_values_itr   = d_values.Current();
  
      cudaError_t retval = DeviceSegmentedRadixSort::SortPairs(
          d_temp_storage, temp_storage_bytes,
          const_keys_itr, d_keys.Alternate(), const_values_itr, d_values.Alternate(),
          num_items, num_segments, d_segment_offsets, d_segment_offsets + 1,
          begin_bit, end_bit, stream, debug_synchronous);
  
      d_keys.selector ^= 1;
      d_values.selector ^= 1;
      return retval;
  }
  
  
  /**
   * Dispatch to CUB_SEGMENTED sorting entrypoint (specialized for descending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<true>          is_descending,
      Int2Type<CUB_SEGMENTED> dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      return DeviceSegmentedRadixSort::SortPairsDescending(
          d_temp_storage, temp_storage_bytes,
          d_keys, d_values,
          num_items, num_segments, d_segment_offsets, d_segment_offsets + 1,
          begin_bit, end_bit, stream, debug_synchronous);
  }
  
  /**
   * Dispatch to CUB_SEGMENTED_NO_OVERWRITE sorting entrypoint (specialized for descending)
   */
  template <typename KeyT, typename ValueT>
  CUB_RUNTIME_FUNCTION
  __forceinline__
  cudaError_t Dispatch(
      Int2Type<true>                          is_descending,
      Int2Type<CUB_SEGMENTED_NO_OVERWRITE>    dispatch_to,
      int                                     *d_selector,
      size_t                                  *d_temp_storage_bytes,
      cudaError_t                             *d_cdp_error,
  
      void*                   d_temp_storage,
      size_t&                 temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      KeyT      const *const_keys_itr     = d_keys.Current();
      ValueT    const *const_values_itr   = d_values.Current();
  
      cudaError_t retval = DeviceSegmentedRadixSort::SortPairsDescending(
          d_temp_storage, temp_storage_bytes,
          const_keys_itr, d_keys.Alternate(), const_values_itr, d_values.Alternate(),
          num_items, num_segments, d_segment_offsets, d_segment_offsets + 1,
          begin_bit, end_bit, stream, debug_synchronous);
  
      d_keys.selector ^= 1;
      d_values.selector ^= 1;
      return retval;
  }
  
  
  //---------------------------------------------------------------------
  // Dispatch to different Thrust entrypoints
  //---------------------------------------------------------------------
  
  /**
   * Dispatch keys-only to Thrust sorting entrypoint
   */
  template <int IS_DESCENDING, typename KeyT>
  cudaError_t Dispatch(
      Int2Type<IS_DESCENDING> is_descending,
      Int2Type<THRUST>        dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void                    *d_temp_storage,
      size_t                  &temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<NullType>  &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
  
      if (d_temp_storage == 0)
      {
          temp_storage_bytes = 1;
      }
      else
      {
          thrust::device_ptr<KeyT> d_keys_wrapper(d_keys.Current());
  
          if (IS_DESCENDING) thrust::reverse(d_keys_wrapper, d_keys_wrapper + num_items);
          thrust::sort(d_keys_wrapper, d_keys_wrapper + num_items);
          if (IS_DESCENDING) thrust::reverse(d_keys_wrapper, d_keys_wrapper + num_items);
      }
  
      return cudaSuccess;
  }
  
  
  /**
   * Dispatch key-value pairs to Thrust sorting entrypoint
   */
  template <int IS_DESCENDING, typename KeyT, typename ValueT>
  cudaError_t Dispatch(
      Int2Type<IS_DESCENDING> is_descending,
      Int2Type<THRUST>        dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void                    *d_temp_storage,
      size_t                  &temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
  
      if (d_temp_storage == 0)
      {
          temp_storage_bytes = 1;
      }
      else
      {
          thrust::device_ptr<KeyT>     d_keys_wrapper(d_keys.Current());
          thrust::device_ptr<ValueT>   d_values_wrapper(d_values.Current());
  
          if (IS_DESCENDING) {
              thrust::reverse(d_keys_wrapper, d_keys_wrapper + num_items);
              thrust::reverse(d_values_wrapper, d_values_wrapper + num_items);
          }
  
          thrust::sort_by_key(d_keys_wrapper, d_keys_wrapper + num_items, d_values_wrapper);
  
          if (IS_DESCENDING) {
              thrust::reverse(d_keys_wrapper, d_keys_wrapper + num_items);
              thrust::reverse(d_values_wrapper, d_values_wrapper + num_items);
          }
      }
  
      return cudaSuccess;
  }
  
  
  //---------------------------------------------------------------------
  // CUDA Nested Parallelism Test Kernel
  //---------------------------------------------------------------------
  
  /**
   * Simple wrapper kernel to invoke DeviceRadixSort
   */
  template <int IS_DESCENDING, typename KeyT, typename ValueT>
  __global__ void CnpDispatchKernel(
      Int2Type<IS_DESCENDING> is_descending,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void                    *d_temp_storage,
      size_t                  temp_storage_bytes,
      DoubleBuffer<KeyT>      d_keys,
      DoubleBuffer<ValueT>    d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      bool                    debug_synchronous)
  {
  #ifndef CUB_CDP
      *d_cdp_error            = cudaErrorNotSupported;
  #else
      *d_cdp_error            = Dispatch(
                                  is_descending, Int2Type<CUB>(), d_selector, d_temp_storage_bytes, d_cdp_error,
                                  d_temp_storage, temp_storage_bytes, d_keys, d_values,
                                  num_items, num_segments, d_segment_offsets,
                                  begin_bit, end_bit, 0, debug_synchronous);
      *d_temp_storage_bytes   = temp_storage_bytes;
      *d_selector             = d_keys.selector;
  #endif
  }
  
  
  /**
   * Dispatch to CDP kernel
   */
  template <int IS_DESCENDING, typename KeyT, typename ValueT>
  cudaError_t Dispatch(
      Int2Type<IS_DESCENDING> is_descending,
      Int2Type<CDP>           dispatch_to,
      int                     *d_selector,
      size_t                  *d_temp_storage_bytes,
      cudaError_t             *d_cdp_error,
  
      void                    *d_temp_storage,
      size_t                  &temp_storage_bytes,
      DoubleBuffer<KeyT>      &d_keys,
      DoubleBuffer<ValueT>    &d_values,
      int                     num_items,
      int                     num_segments,
      const int               *d_segment_offsets,
      int                     begin_bit,
      int                     end_bit,
      cudaStream_t            stream,
      bool                    debug_synchronous)
  {
      // Invoke kernel to invoke device-side dispatch
      CnpDispatchKernel<<<1,1>>>(
          is_descending, d_selector, d_temp_storage_bytes, d_cdp_error,
          d_temp_storage, temp_storage_bytes, d_keys, d_values,
          num_items, num_segments, d_segment_offsets,
          begin_bit, end_bit, debug_synchronous);
  
      // Copy out selector
      CubDebugExit(cudaMemcpy(&d_keys.selector, d_selector, sizeof(int) * 1, cudaMemcpyDeviceToHost));
      d_values.selector = d_keys.selector;
  
      // Copy out temp_storage_bytes
      CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));
  
      // Copy out error
      cudaError_t retval;
      CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
      return retval;
  }
  
  
  
  //---------------------------------------------------------------------
  // Problem generation
  //---------------------------------------------------------------------
  
  
  /**
   * Simple key-value pairing
   */
  template <
      typename KeyT,
      typename ValueT,
      bool IS_FLOAT = (Traits<KeyT>::CATEGORY == FLOATING_POINT)>
  struct Pair
  {
      KeyT     key;
      ValueT   value;
  
      bool operator<(const Pair &b) const
      {
          return (key < b.key);
      }
  };
  
  
  /**
   * Simple key-value pairing (specialized for bool types)
   */
  template <typename ValueT>
  struct Pair<bool, ValueT, false>
  {
      bool     key;
      ValueT   value;
  
      bool operator<(const Pair &b) const
      {
          return (!key && b.key);
      }
  };
  
  
  /**
   * Simple key-value pairing (specialized for floating point types)
   */
  template <typename KeyT, typename ValueT>
  struct Pair<KeyT, ValueT, true>
  {
      KeyT     key;
      ValueT   value;
  
      bool operator<(const Pair &b) const
      {
          if (key < b.key)
              return true;
  
          if (key > b.key)
              return false;
  
          // KeyT in unsigned bits
          typedef typename Traits<KeyT>::UnsignedBits UnsignedBits;
  
          // Return true if key is negative zero and b.key is positive zero
          UnsignedBits key_bits   = *reinterpret_cast<UnsignedBits*>(const_cast<KeyT*>(&key));
          UnsignedBits b_key_bits = *reinterpret_cast<UnsignedBits*>(const_cast<KeyT*>(&b.key));
          UnsignedBits HIGH_BIT   = Traits<KeyT>::HIGH_BIT;
  
          return ((key_bits & HIGH_BIT) != 0) && ((b_key_bits & HIGH_BIT) == 0);
      }
  };
  
  
  /**
   * Initialize key data
   */
  template <typename KeyT>
  void InitializeKeyBits(
      GenMode         gen_mode,
      KeyT            *h_keys,
      int             num_items,
      int             entropy_reduction)
  {
      for (int i = 0; i < num_items; ++i)
          InitValue(gen_mode, h_keys[i], i);
  }
  
  
  /**
   * Initialize solution
   */
  template <bool IS_DESCENDING, typename KeyT>
  void InitializeSolution(
      KeyT    *h_keys,
      int     num_items,
      int     num_segments,
      int     *h_segment_offsets,
      int     begin_bit,
      int     end_bit,
      int     *&h_reference_ranks,
      KeyT    *&h_reference_keys)
  {
      typedef Pair<KeyT, int> PairT;
  
      PairT *h_pairs = new PairT[num_items];
  
      int num_bits = end_bit - begin_bit;
      for (int i = 0; i < num_items; ++i)
      {
  
          // Mask off unwanted portions
          if (num_bits < sizeof(KeyT) * 8)
          {
              unsigned long long base = 0;
              memcpy(&base, &h_keys[i], sizeof(KeyT));
              base &= ((1ull << num_bits) - 1) << begin_bit;
              memcpy(&h_pairs[i].key, &base, sizeof(KeyT));
          }
          else
          {
              h_pairs[i].key = h_keys[i];
          }
  
          h_pairs[i].value = i;
      }
  
      printf("
  Sorting reference solution on CPU (%d segments)...", num_segments); fflush(stdout);
  
      for (int i = 0; i < num_segments; ++i)
      {
          if (IS_DESCENDING) std::reverse(h_pairs + h_segment_offsets[i], h_pairs + h_segment_offsets[i + 1]);
          std::stable_sort(               h_pairs + h_segment_offsets[i], h_pairs + h_segment_offsets[i + 1]);
          if (IS_DESCENDING) std::reverse(h_pairs + h_segment_offsets[i], h_pairs + h_segment_offsets[i + 1]);
      }
  
      printf(" Done.
  "); fflush(stdout);
  
      h_reference_ranks  = new int[num_items];
      h_reference_keys   = new KeyT[num_items];
  
      for (int i = 0; i < num_items; ++i)
      {
          h_reference_ranks[i]    = h_pairs[i].value;
          h_reference_keys[i]     = h_keys[h_pairs[i].value];
      }
  
      if (h_pairs) delete[] h_pairs;
  }
  
  
  //---------------------------------------------------------------------
  // Test generation
  //---------------------------------------------------------------------
  
  
  /**
   * Test DeviceRadixSort
   */
  template <
      Backend     BACKEND,
      bool        IS_DESCENDING,
      typename    KeyT,
      typename    ValueT>
  void Test(
      KeyT        *h_keys,
      ValueT      *h_values,
      int         num_items,
      int         num_segments,
      int         *h_segment_offsets,
      int         begin_bit,
      int         end_bit,
      KeyT        *h_reference_keys,
      ValueT      *h_reference_values)
  {
      // Key alias type
  #if (__CUDACC_VER_MAJOR__ >= 9)
      typedef typename If<Equals<KeyT, half_t>::VALUE, __half, KeyT>::Type KeyAliasT;
  #else
      typedef KeyT KeyAliasT;
  #endif
  
      const bool KEYS_ONLY = Equals<ValueT, NullType>::VALUE;
  
      printf("%s %s cub::DeviceRadixSort %d items, %d segments, %d-byte keys (%s) %d-byte values (%s), descending %d, begin_bit %d, end_bit %d
  ",
          (BACKEND == CUB_NO_OVERWRITE) ? "CUB_NO_OVERWRITE" : (BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
          (KEYS_ONLY) ? "keys-only" : "key-value",
          num_items, num_segments,
          (int) sizeof(KeyT), typeid(KeyT).name(), (KEYS_ONLY) ? 0 : (int) sizeof(ValueT), typeid(ValueT).name(),
          IS_DESCENDING, begin_bit, end_bit);
      fflush(stdout);
  
      if (g_verbose)
      {
          printf("Input keys:
  ");
          DisplayResults(h_keys, num_items);
          printf("
  
  ");
      }
  
      // Allocate device arrays
      DoubleBuffer<KeyAliasT> d_keys;
      DoubleBuffer<ValueT>    d_values;
      int                     *d_selector;
      int                     *d_segment_offsets;
      size_t                  *d_temp_storage_bytes;
      cudaError_t             *d_cdp_error;
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys.d_buffers[0], sizeof(KeyT) * num_items));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys.d_buffers[1], sizeof(KeyT) * num_items));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_selector, sizeof(int) * 1));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(int) * (num_segments + 1)));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1));
      CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1));
      if (!KEYS_ONLY)
      {
          CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values.d_buffers[0], sizeof(ValueT) * num_items));
          CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values.d_buffers[1], sizeof(ValueT) * num_items));
      }
  
      // Allocate temporary storage (and make it un-aligned)
      size_t  temp_storage_bytes  = 0;
      void    *d_temp_storage     = NULL;
      CubDebugExit(Dispatch(
          Int2Type<IS_DESCENDING>(), Int2Type<BACKEND>(), d_selector, d_temp_storage_bytes, d_cdp_error,
          d_temp_storage, temp_storage_bytes, d_keys, d_values,
          num_items, num_segments, d_segment_offsets,
          begin_bit, end_bit, 0, true));
  
      CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes + 1));
      void* mis_aligned_temp = static_cast<char*>(d_temp_storage) + 1;
  
      // Initialize/clear device arrays
      d_keys.selector = 0;
      CubDebugExit(cudaMemcpy(d_keys.d_buffers[0], h_keys, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
      CubDebugExit(cudaMemset(d_keys.d_buffers[1], 0, sizeof(KeyT) * num_items));
      if (!KEYS_ONLY)
      {
          d_values.selector = 0;
          CubDebugExit(cudaMemcpy(d_values.d_buffers[0], h_values, sizeof(ValueT) * num_items, cudaMemcpyHostToDevice));
          CubDebugExit(cudaMemset(d_values.d_buffers[1], 0, sizeof(ValueT) * num_items));
      }
      CubDebugExit(cudaMemcpy(d_segment_offsets, h_segment_offsets, sizeof(int) * (num_segments + 1), cudaMemcpyHostToDevice));
  
      // Run warmup/correctness iteration
      CubDebugExit(Dispatch(
          Int2Type<IS_DESCENDING>(), Int2Type<BACKEND>(), d_selector, d_temp_storage_bytes, d_cdp_error,
          mis_aligned_temp, temp_storage_bytes, d_keys, d_values,
          num_items, num_segments, d_segment_offsets,
          begin_bit, end_bit, 0, true));
  
      // Flush any stdout/stderr
      fflush(stdout);
      fflush(stderr);
  
      // Check for correctness (and display results, if specified)
      printf("Warmup done.  Checking results:
  "); fflush(stdout);
      int compare = CompareDeviceResults(h_reference_keys, reinterpret_cast<KeyT*>(d_keys.Current()), num_items, true, g_verbose);
      printf("\t Compare keys (selector %d): %s ", d_keys.selector, compare ? "FAIL" : "PASS"); fflush(stdout);
      if (!KEYS_ONLY)
      {
          int values_compare = CompareDeviceResults(h_reference_values, d_values.Current(), num_items, true, g_verbose);
          compare |= values_compare;
          printf("\t Compare values (selector %d): %s ", d_values.selector, values_compare ? "FAIL" : "PASS"); fflush(stdout);
      }
      if (BACKEND == CUB_NO_OVERWRITE)
      {
          // Check that input isn't overwritten
          int input_compare = CompareDeviceResults(h_keys, reinterpret_cast<KeyT*>(d_keys.d_buffers[0]), num_items, true, g_verbose);
          compare |= input_compare;
          printf("\t Compare input keys: %s ", input_compare ? "FAIL" : "PASS"); fflush(stdout);
      }
  
      // Performance
      if (g_timing_iterations)
          printf("
  Performing timing iterations:
  "); fflush(stdout);
  
      GpuTimer gpu_timer;
      float elapsed_millis = 0.0f;
      for (int i = 0; i < g_timing_iterations; ++i)
      {
          // Initialize/clear device arrays
          CubDebugExit(cudaMemcpy(d_keys.d_buffers[d_keys.selector], h_keys, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
          CubDebugExit(cudaMemset(d_keys.d_buffers[d_keys.selector ^ 1], 0, sizeof(KeyT) * num_items));
          if (!KEYS_ONLY)
          {
              CubDebugExit(cudaMemcpy(d_values.d_buffers[d_values.selector], h_values, sizeof(ValueT) * num_items, cudaMemcpyHostToDevice));
              CubDebugExit(cudaMemset(d_values.d_buffers[d_values.selector ^ 1], 0, sizeof(ValueT) * num_items));
          }
  
          gpu_timer.Start();
          CubDebugExit(Dispatch(
              Int2Type<IS_DESCENDING>(), Int2Type<BACKEND>(), d_selector, d_temp_storage_bytes, d_cdp_error,
              mis_aligned_temp, temp_storage_bytes, d_keys, d_values,
              num_items, num_segments, d_segment_offsets,
              begin_bit, end_bit, 0, false));
          gpu_timer.Stop();
          elapsed_millis += gpu_timer.ElapsedMillis();
      }
  
      // Display performance
      if (g_timing_iterations > 0)
      {
          float avg_millis = elapsed_millis / g_timing_iterations;
          float giga_rate = float(num_items) / avg_millis / 1000.0f / 1000.0f;
          float giga_bandwidth = (KEYS_ONLY) ?
              giga_rate * sizeof(KeyT) * 2 :
              giga_rate * (sizeof(KeyT) + sizeof(ValueT)) * 2;
          printf("
  %.3f elapsed ms, %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", elapsed_millis, avg_millis, giga_rate, giga_bandwidth);
      }
  
      printf("
  
  ");
  
      // Cleanup
      if (d_keys.d_buffers[0]) CubDebugExit(g_allocator.DeviceFree(d_keys.d_buffers[0]));
      if (d_keys.d_buffers[1]) CubDebugExit(g_allocator.DeviceFree(d_keys.d_buffers[1]));
      if (d_values.d_buffers[0]) CubDebugExit(g_allocator.DeviceFree(d_values.d_buffers[0]));
      if (d_values.d_buffers[1]) CubDebugExit(g_allocator.DeviceFree(d_values.d_buffers[1]));
      if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
      if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
      if (d_selector) CubDebugExit(g_allocator.DeviceFree(d_selector));
      if (d_segment_offsets) CubDebugExit(g_allocator.DeviceFree(d_segment_offsets));
      if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
  
      // Correctness asserts
      AssertEquals(0, compare);
  }
  
  
  /**
   * Test backend
   */
  template <bool IS_DESCENDING, typename KeyT, typename ValueT>
  void TestBackend(
      KeyT    *h_keys,
      int     num_items,
      int     num_segments,
      int     *h_segment_offsets,
      int     begin_bit,
      int     end_bit,
      KeyT    *h_reference_keys,
      int     *h_reference_ranks)
  {
      const bool KEYS_ONLY = Equals<ValueT, NullType>::VALUE;
  
      ValueT *h_values             = NULL;
      ValueT *h_reference_values   = NULL;
  
      if (!KEYS_ONLY)
      {
          h_values            = new ValueT[num_items];
          h_reference_values  = new ValueT[num_items];
  
          for (int i = 0; i < num_items; ++i)
          {
              InitValue(INTEGER_SEED, h_values[i], i);
              InitValue(INTEGER_SEED, h_reference_values[i], h_reference_ranks[i]);
          }
      }
  
  #ifdef SEGMENTED_SORT
      // Test multi-segment implementations
      Test<CUB_SEGMENTED, IS_DESCENDING>(               h_keys, h_values, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_values);
      Test<CUB_SEGMENTED_NO_OVERWRITE, IS_DESCENDING>(  h_keys, h_values, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_values);
  #else   // SEGMENTED_SORT
      if (num_segments == 1)
      {
          // Test single-segment implementations
          Test<CUB, IS_DESCENDING>(               h_keys, h_values, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_values);
          Test<CUB_NO_OVERWRITE, IS_DESCENDING>(  h_keys, h_values, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_values);
      #ifdef CUB_CDP
          Test<CDP, IS_DESCENDING>(               h_keys, h_values, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_values);
      #endif
      }
  #endif  // SEGMENTED_SORT
  
      if (h_values) delete[] h_values;
      if (h_reference_values) delete[] h_reference_values;
  }
  
  
  
  
  /**
   * Test value type
   */
  template <bool IS_DESCENDING, typename KeyT>
  void TestValueTypes(
      KeyT    *h_keys,
      int     num_items,
      int     num_segments,
      int     *h_segment_offsets,
      int     begin_bit,
      int     end_bit)
  {
      // Initialize the solution
  
      int *h_reference_ranks = NULL;
      KeyT *h_reference_keys = NULL;
      InitializeSolution<IS_DESCENDING>(h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_ranks, h_reference_keys);
  
      // Test keys-only
      TestBackend<IS_DESCENDING, KeyT, NullType>          (h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_ranks);
  
      // Test with 8b value
      TestBackend<IS_DESCENDING, KeyT, unsigned char>     (h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_ranks);
  
      // Test with 32b value
      TestBackend<IS_DESCENDING, KeyT, unsigned int>      (h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_ranks);
  
      // Test with 64b value
      TestBackend<IS_DESCENDING, KeyT, unsigned long long>(h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_ranks);
  
      // Test with non-trivially-constructable value
      TestBackend<IS_DESCENDING, KeyT, TestBar>           (h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit, h_reference_keys, h_reference_ranks);
  
      // Cleanup
      if (h_reference_ranks) delete[] h_reference_ranks;
      if (h_reference_keys) delete[] h_reference_keys;
  }
  
  
  
  /**
   * Test ascending/descending
   */
  template <typename KeyT>
  void TestDirection(
      KeyT    *h_keys,
      int     num_items,
      int     num_segments,
      int     *h_segment_offsets,
      int     begin_bit,
      int     end_bit)
  {
      TestValueTypes<true>(h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit);
      TestValueTypes<false>(h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit);
  }
  
  
  /**
   * Test different bit ranges
   */
  template <typename KeyT>
  void TestBits(
      KeyT    *h_keys,
      int     num_items,
      int     num_segments,
      int     *h_segment_offsets)
  {
      // Don't test partial-word sorting for boolean, fp, or signed types (the bit-flipping techniques get in the way)
      if ((Traits<KeyT>::CATEGORY == UNSIGNED_INTEGER) && (!Equals<KeyT, bool>::VALUE))
      {
          // Partial bits
          int begin_bit = 1;
          int end_bit = (sizeof(KeyT) * 8) - 1;
          printf("Testing key bits [%d,%d)
  ", begin_bit, end_bit); fflush(stdout);
          TestDirection(h_keys, num_items, num_segments, h_segment_offsets, begin_bit, end_bit);
  
          // Across subword boundaries
          int mid_bit = sizeof(KeyT) * 4;
          printf("Testing key bits [%d,%d)
  ", mid_bit - 1, mid_bit + 1); fflush(stdout);
          TestDirection(h_keys, num_items, num_segments, h_segment_offsets, mid_bit - 1, mid_bit + 1);
      }
  
      printf("Testing key bits [%d,%d)
  ", 0, int(sizeof(KeyT)) * 8); fflush(stdout);
      TestDirection(h_keys, num_items, num_segments, h_segment_offsets, 0, sizeof(KeyT) * 8);
  }
  
  
  /**
   * Test different segment compositions
   */
  template <typename KeyT>
  void TestSegments(
      KeyT    *h_keys,
      int     num_items,
      int     max_segments)
  {
      int *h_segment_offsets = new int[max_segments + 1];
  
  #ifdef SEGMENTED_SORT
      for (int num_segments = max_segments; num_segments > 1; num_segments = (num_segments + 32 - 1) / 32)
      {
          if (num_items / num_segments < 128 * 1000) {
              // Right now we assign a single thread block to each segment, so lets keep it to under 128K items per segment
              InitializeSegments(num_items, num_segments, h_segment_offsets);
              TestBits(h_keys, num_items, num_segments, h_segment_offsets);
          }
      }
  #else
      // Test single segment
      if (num_items < 128 * 1000) {
          // Right now we assign a single thread block to each segment, so lets keep it to under 128K items per segment
          InitializeSegments(num_items, 1, h_segment_offsets);
          TestBits(h_keys, num_items, 1, h_segment_offsets);
      }
  #endif
      if (h_segment_offsets) delete[] h_segment_offsets;
  }
  
  
  /**
   * Test different (sub)lengths and number of segments
   */
  template <typename KeyT>
  void TestSizes(
      KeyT    *h_keys,
      int     max_items,
      int     max_segments)
  {
      for (int num_items = max_items; num_items > 1; num_items = (num_items + 32 - 1) / 32)
      {
          TestSegments(h_keys, num_items, max_segments);
      }
      TestSegments(h_keys, 1, max_segments);
      TestSegments(h_keys, 0, max_segments);
  }
  
  
  /**
   * Test key sampling distributions
   */
  template <typename KeyT>
  void TestGen(
      int             max_items,
      int             max_segments)
  {
      int ptx_version;
      CubDebugExit(PtxVersion(ptx_version));
  
      if (max_items < 0)
          max_items = (ptx_version > 100) ? 9000003 : max_items = 5000003;
  
      if (max_segments < 0)
          max_segments = 5003;
  
      KeyT *h_keys = new KeyT[max_items];
  
      for (int entropy_reduction = 0; entropy_reduction <= 6; entropy_reduction += 3)
      {
          printf("
  Testing random %s keys with entropy reduction factor %d
  ", typeid(KeyT).name(), entropy_reduction); fflush(stdout);
          InitializeKeyBits(RANDOM, h_keys, max_items, entropy_reduction);
          TestSizes(h_keys, max_items, max_segments);
      }
  
      printf("
  Testing uniform %s keys
  ", typeid(KeyT).name()); fflush(stdout);
      InitializeKeyBits(UNIFORM, h_keys, max_items, 0);
      TestSizes(h_keys, max_items, max_segments);
  
      printf("
  Testing natural number %s keys
  ", typeid(KeyT).name()); fflush(stdout);
      InitializeKeyBits(INTEGER_SEED, h_keys, max_items, 0);
      TestSizes(h_keys, max_items, max_segments);
  
      if (h_keys) delete[] h_keys;
  }
  
  
  //---------------------------------------------------------------------
  // Simple test
  //---------------------------------------------------------------------
  
  template <
      Backend     BACKEND,
      typename    KeyT,
      typename    ValueT,
      bool        IS_DESCENDING>
  void Test(
      int         num_items,
      int         num_segments,
      GenMode     gen_mode,
      int         entropy_reduction,
      int         begin_bit,
      int         end_bit)
  {
      const bool KEYS_ONLY = Equals<ValueT, NullType>::VALUE;
  
      KeyT    *h_keys             = new KeyT[num_items];
      int     *h_reference_ranks  = NULL;
      KeyT    *h_reference_keys   = NULL;
      ValueT  *h_values           = NULL;
      ValueT  *h_reference_values = NULL;
      int     *h_segment_offsets  = new int[num_segments + 1];
  
      if (end_bit < 0)
          end_bit = sizeof(KeyT) * 8;
  
      InitializeKeyBits(gen_mode, h_keys, num_items, entropy_reduction);
      InitializeSegments(num_items, num_segments, h_segment_offsets);
      InitializeSolution<IS_DESCENDING>(
          h_keys, num_items, num_segments, h_segment_offsets,
          begin_bit, end_bit, h_reference_ranks, h_reference_keys);
  
      if (!KEYS_ONLY)
      {
          h_values            = new ValueT[num_items];
          h_reference_values  = new ValueT[num_items];
  
          for (int i = 0; i < num_items; ++i)
          {
              InitValue(INTEGER_SEED, h_values[i], i);
              InitValue(INTEGER_SEED, h_reference_values[i], h_reference_ranks[i]);
          }
      }
      if (h_reference_ranks) delete[] h_reference_ranks;
  
      printf("
  Testing bits [%d,%d) of %s keys with gen-mode %d
  ", begin_bit, end_bit, typeid(KeyT).name(), gen_mode); fflush(stdout);
      Test<BACKEND, IS_DESCENDING>(
          h_keys, h_values,
          num_items, num_segments, h_segment_offsets,
          begin_bit, end_bit, h_reference_keys, h_reference_values);
  
      if (h_keys)             delete[] h_keys;
      if (h_reference_keys)   delete[] h_reference_keys;
      if (h_values)           delete[] h_values;
      if (h_reference_values) delete[] h_reference_values;
      if (h_segment_offsets)  delete[] h_segment_offsets;
  }
  
  
  
  //---------------------------------------------------------------------
  // Main
  //---------------------------------------------------------------------
  
  /**
   * Main
   */
  int main(int argc, char** argv)
  {
      int bits = -1;
      int num_items = -1;
      int num_segments = -1;
      int entropy_reduction = 0;
  
      // Initialize command line
      CommandLineArgs args(argc, argv);
      g_verbose = args.CheckCmdLineFlag("v");
      args.GetCmdLineArgument("n", num_items);
      args.GetCmdLineArgument("s", num_segments);
      args.GetCmdLineArgument("i", g_timing_iterations);
      args.GetCmdLineArgument("repeat", g_repeat);
      args.GetCmdLineArgument("bits", bits);
      args.GetCmdLineArgument("entropy", entropy_reduction);
  
      // Print usage
      if (args.CheckCmdLineFlag("help"))
      {
          printf("%s "
              "[--bits=<valid key bits>]"
              "[--n=<input items> "
              "[--s=<num segments> "
              "[--i=<timing iterations> "
              "[--device=<device-id>] "
              "[--repeat=<repetitions of entire test suite>]"
              "[--v] "
              "[--entropy=<entropy-reduction factor (default 0)>]"
              "
  ", argv[0]);
          exit(0);
      }
  
      // Initialize device
      CubDebugExit(args.DeviceInit());
  
      // Get ptx version
      int ptx_version;
      CubDebugExit(PtxVersion(ptx_version));
  
  #ifdef QUICKER_TEST
  
      enum {
          IS_DESCENDING   = false
      };
  
      // Compile/run basic CUB test
      if (num_items < 0)      num_items       = 48000000;
      if (num_segments < 0)   num_segments    = 5000;
  
      Test<CUB,           unsigned char, NullType, IS_DESCENDING>(num_items, 1, RANDOM, entropy_reduction, 0, bits);
      Test<CUB,           unsigned char, unsigned int, IS_DESCENDING>(num_items, 1, RANDOM, entropy_reduction, 0, bits);
  
  #if (__CUDACC_VER_MAJOR__ >= 9)
      Test<CUB,           half_t,       NullType, IS_DESCENDING>(       num_items, 1,               RANDOM, entropy_reduction, 0, bits);
  #endif
  
      Test<CUB_SEGMENTED, unsigned int,       NullType, IS_DESCENDING>(       num_items, num_segments,    RANDOM, entropy_reduction, 0, bits);
  
      Test<CUB,           unsigned int,       NullType, IS_DESCENDING>(       num_items, 1,               RANDOM, entropy_reduction, 0, bits);
      Test<CUB,           unsigned long long, NullType, IS_DESCENDING>(       num_items, 1,               RANDOM, entropy_reduction, 0, bits);
  
      Test<CUB,           unsigned int,       unsigned int, IS_DESCENDING>(   num_items, 1,               RANDOM, entropy_reduction, 0, bits);
      Test<CUB,           unsigned long long, unsigned int, IS_DESCENDING>(   num_items, 1,               RANDOM, entropy_reduction, 0, bits);
  
  #elif defined(QUICK_TEST)
  
      // Compile/run quick tests
      if (num_items < 0)      num_items       = 48000000;
      if (num_segments < 0)   num_segments    = 5000;
  
      // Compare CUB and thrust on 32b keys-only
      Test<CUB, unsigned int, NullType, false> (                      num_items, 1, RANDOM, entropy_reduction, 0, bits);
      Test<THRUST, unsigned int, NullType, false> (                   num_items, 1, RANDOM, entropy_reduction, 0, bits);
  
      // Compare CUB and thrust on 64b keys-only
      Test<CUB, unsigned long long, NullType, false> (                num_items, 1, RANDOM, entropy_reduction, 0, bits);
      Test<THRUST, unsigned long long, NullType, false> (             num_items, 1, RANDOM, entropy_reduction, 0, bits);
  
  
      // Compare CUB and thrust on 32b key-value pairs
      Test<CUB, unsigned int, unsigned int, false> (                  num_items, 1, RANDOM, entropy_reduction, 0, bits);
      Test<THRUST, unsigned int, unsigned int, false> (               num_items, 1, RANDOM, entropy_reduction, 0, bits);
  
      // Compare CUB and thrust on 64b key-value pairs
      Test<CUB, unsigned long long, unsigned long long, false> (      num_items, 1, RANDOM, entropy_reduction, 0, bits);
      Test<THRUST, unsigned long long, unsigned long long, false> (   num_items, 1, RANDOM, entropy_reduction, 0, bits);
  
  
  #else
  
      // Compile/run thorough tests
      for (int i = 0; i <= g_repeat; ++i)
      {
          TestGen<bool>                 (num_items, num_segments);
  
          TestGen<char>                 (num_items, num_segments);
          TestGen<signed char>          (num_items, num_segments);
          TestGen<unsigned char>        (num_items, num_segments);
  
          TestGen<short>                (num_items, num_segments);
          TestGen<unsigned short>       (num_items, num_segments);
  
          TestGen<int>                  (num_items, num_segments);
          TestGen<unsigned int>         (num_items, num_segments);
  
          TestGen<long>                 (num_items, num_segments);
          TestGen<unsigned long>        (num_items, num_segments);
  
          TestGen<long long>            (num_items, num_segments);
          TestGen<unsigned long long>   (num_items, num_segments);
  
  #if (__CUDACC_VER_MAJOR__ >= 9)
          TestGen<half_t>                (num_items, num_segments);
  #endif
          TestGen<float>                (num_items, num_segments);
  
          if (ptx_version > 120)                          // Don't check doubles on PTX120 or below because they're down-converted
              TestGen<double>           (num_items, num_segments);
  
      }
  
  #endif
  
      return 0;
  }