Blame view
tools/openfst-1.6.7/include/fst/bi-table.h
14.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Classes for representing a bijective mapping between an arbitrary entry // of type T and a signed integral ID. #ifndef FST_BI_TABLE_H_ #define FST_BI_TABLE_H_ #include <deque> #include <memory> #include <functional> #include <unordered_map> #include <unordered_set> #include <vector> #include <fst/log.h> #include <fst/memory.h> namespace fst { // Bitables model bijective mappings between entries of an arbitrary type T and // an signed integral ID of type I. The IDs are allocated starting from 0 in // order. // // template <class I, class T> // class BiTable { // public: // // // Required constructors. // BiTable(); // // // Looks up integer ID from entry. If it doesn't exist and insert // / is true, adds it; otherwise, returns -1. // I FindId(const T &entry, bool insert = true); // // // Looks up entry from integer ID. // const T &FindEntry(I) const; // // // Returns number of stored entries. // I Size() const; // }; // An implementation using a hash map for the entry to ID mapping. H is the // hash function and E is the equality function. If passed to the constructor, // ownership is given to this class. template <class I, class T, class H, class E = std::equal_to<T>> class HashBiTable { public: // Reserves space for table_size elements. If passing H and E to the // constructor, this class owns them. explicit HashBiTable(size_t table_size = 0, H *h = nullptr, E *e = nullptr) : hash_func_(h ? h : new H()), hash_equal_(e ? e : new E()), entry2id_(table_size, *hash_func_, *hash_equal_) { if (table_size) id2entry_.reserve(table_size); } HashBiTable(const HashBiTable<I, T, H, E> &table) : hash_func_(new H(*table.hash_func_)), hash_equal_(new E(*table.hash_equal_)), entry2id_(table.entry2id_.begin(), table.entry2id_.end(), table.entry2id_.size(), *hash_func_, *hash_equal_), id2entry_(table.id2entry_) {} I FindId(const T &entry, bool insert = true) { if (!insert) { const auto it = entry2id_.find(entry); return it == entry2id_.end() ? -1 : it->second - 1; } I &id_ref = entry2id_[entry]; if (id_ref == 0) { // T not found; stores and assigns a new ID. id2entry_.push_back(entry); id_ref = id2entry_.size(); } return id_ref - 1; // NB: id_ref = ID + 1. } const T &FindEntry(I s) const { return id2entry_[s]; } I Size() const { return id2entry_.size(); } // TODO(riley): Add fancy clear-to-size, as in CompactHashBiTable. void Clear() { entry2id_.clear(); id2entry_.clear(); } private: std::unique_ptr<H> hash_func_; std::unique_ptr<E> hash_equal_; std::unordered_map<T, I, H, E> entry2id_; std::vector<T> id2entry_; }; // Enables alternative hash set representations below. enum HSType { HS_STL = 0, HS_DENSE = 1, HS_SPARSE = 2, HS_FLAT = 3 }; // Default hash set is STL hash_set. template <class K, class H, class E, HSType HS> struct HashSet : public std::unordered_set<K, H, E, PoolAllocator<K>> { explicit HashSet(size_t n = 0, const H &h = H(), const E &e = E()) : std::unordered_set<K, H, E, PoolAllocator<K>>(n, h, e) {} void rehash(size_t n) {} }; // An implementation using a hash set for the entry to ID mapping. The hash set // holds keys which are either the ID or kCurrentKey. These keys can be mapped // to entries either by looking up in the entry vector or, if kCurrentKey, in // current_entry_. The hash and key equality functions map to entries first. H // is the hash function and E is the equality function. If passed to the // constructor, ownership is given to this class. template <class I, class T, class H, class E = std::equal_to<T>, HSType HS = HS_FLAT> class CompactHashBiTable { public: friend class HashFunc; friend class HashEqual; // Reserves space for table_size elements. If passing H and E to the // constructor, this class owns them. explicit CompactHashBiTable(size_t table_size = 0, H *h = nullptr, E *e = nullptr) : hash_func_(h ? h : new H()), hash_equal_(e ? e : new E()), compact_hash_func_(*this), compact_hash_equal_(*this), keys_(table_size, compact_hash_func_, compact_hash_equal_) { if (table_size) id2entry_.reserve(table_size); } CompactHashBiTable(const CompactHashBiTable<I, T, H, E, HS> &table) : hash_func_(new H(*table.hash_func_)), hash_equal_(new E(*table.hash_equal_)), compact_hash_func_(*this), compact_hash_equal_(*this), keys_(table.keys_.size(), compact_hash_func_, compact_hash_equal_), id2entry_(table.id2entry_) { keys_.insert(table.keys_.begin(), table.keys_.end()); } I FindId(const T &entry, bool insert = true) { current_entry_ = &entry; if (insert) { auto result = keys_.insert(kCurrentKey); if (!result.second) return *result.first; // Already exists. // Overwrites kCurrentKey with a new key value; this is safe because it // doesn't affect hashing or equality testing. I key = id2entry_.size(); const_cast<I &>(*result.first) = key; id2entry_.push_back(entry); return key; } const auto it = keys_.find(kCurrentKey); return it == keys_.end() ? -1 : *it; } const T &FindEntry(I s) const { return id2entry_[s]; } I Size() const { return id2entry_.size(); } // Clears content; with argument, erases last n IDs. void Clear(ssize_t n = -1) { if (n < 0 || n >= id2entry_.size()) { // Clears completely. keys_.clear(); id2entry_.clear(); } else if (n == id2entry_.size() - 1) { // Leaves only key 0. const T entry = FindEntry(0); keys_.clear(); id2entry_.clear(); FindId(entry, true); } else { while (n-- > 0) { I key = id2entry_.size() - 1; keys_.erase(key); id2entry_.pop_back(); } keys_.rehash(0); } } private: static constexpr I kCurrentKey = -1; static constexpr I kEmptyKey = -2; static constexpr I kDeletedKey = -3; class HashFunc { public: explicit HashFunc(const CompactHashBiTable &ht) : ht_(&ht) {} size_t operator()(I k) const { if (k >= kCurrentKey) { return (*ht_->hash_func_)(ht_->Key2Entry(k)); } else { return 0; } } private: const CompactHashBiTable *ht_; }; class HashEqual { public: explicit HashEqual(const CompactHashBiTable &ht) : ht_(&ht) {} bool operator()(I k1, I k2) const { if (k1 == k2) { return true; } else if (k1 >= kCurrentKey && k2 >= kCurrentKey) { return (*ht_->hash_equal_)(ht_->Key2Entry(k1), ht_->Key2Entry(k2)); } else { return false; } } private: const CompactHashBiTable *ht_; }; using KeyHashSet = HashSet<I, HashFunc, HashEqual, HS>; const T &Key2Entry(I k) const { if (k == kCurrentKey) { return *current_entry_; } else { return id2entry_[k]; } } std::unique_ptr<H> hash_func_; std::unique_ptr<E> hash_equal_; HashFunc compact_hash_func_; HashEqual compact_hash_equal_; KeyHashSet keys_; std::vector<T> id2entry_; const T *current_entry_; }; template <class I, class T, class H, class E, HSType HS> constexpr I CompactHashBiTable<I, T, H, E, HS>::kCurrentKey; template <class I, class T, class H, class E, HSType HS> constexpr I CompactHashBiTable<I, T, H, E, HS>::kEmptyKey; template <class I, class T, class H, class E, HSType HS> constexpr I CompactHashBiTable<I, T, H, E, HS>::kDeletedKey; // An implementation using a vector for the entry to ID mapping. It is passed a // function object FP that should fingerprint entries uniquely to an integer // that can used as a vector index. Normally, VectorBiTable constructs the FP // object. The user can instead pass in this object; in that case, VectorBiTable // takes its ownership. template <class I, class T, class FP> class VectorBiTable { public: // Reserves table_size cells of space. If passing FP argument to the // constructor, this class owns it. explicit VectorBiTable(FP *fp = nullptr, size_t table_size = 0) : fp_(fp ? fp : new FP()) { if (table_size) id2entry_.reserve(table_size); } VectorBiTable(const VectorBiTable<I, T, FP> &table) : fp_(new FP(*table.fp_)), fp2id_(table.fp2id_), id2entry_(table.id2entry_) {} I FindId(const T &entry, bool insert = true) { ssize_t fp = (*fp_)(entry); if (fp >= fp2id_.size()) fp2id_.resize(fp + 1); I &id_ref = fp2id_[fp]; if (id_ref == 0) { // T not found. if (insert) { // Stores and assigns a new ID. id2entry_.push_back(entry); id_ref = id2entry_.size(); } else { return -1; } } return id_ref - 1; // NB: id_ref = ID + 1. } const T &FindEntry(I s) const { return id2entry_[s]; } I Size() const { return id2entry_.size(); } const FP &Fingerprint() const { return *fp_; } private: std::unique_ptr<FP> fp_; std::vector<I> fp2id_; std::vector<T> id2entry_; }; // An implementation using a vector and a compact hash table. The selecting // functor S returns true for entries to be hashed in the vector. The // fingerprinting functor FP returns a unique fingerprint for each entry to be // hashed in the vector (these need to be suitable for indexing in a vector). // The hash functor H is used when hashing entry into the compact hash table. // If passed to the constructor, ownership is given to this class. template <class I, class T, class S, class FP, class H, HSType HS = HS_DENSE> class VectorHashBiTable { public: friend class HashFunc; friend class HashEqual; explicit VectorHashBiTable(S *s, FP *fp, H *h, size_t vector_size = 0, size_t entry_size = 0) : selector_(s), fp_(fp), h_(h), hash_func_(*this), hash_equal_(*this), keys_(0, hash_func_, hash_equal_) { if (vector_size) fp2id_.reserve(vector_size); if (entry_size) id2entry_.reserve(entry_size); } VectorHashBiTable(const VectorHashBiTable<I, T, S, FP, H, HS> &table) : selector_(new S(table.s_)), fp_(new FP(*table.fp_)), h_(new H(*table.h_)), id2entry_(table.id2entry_), fp2id_(table.fp2id_), hash_func_(*this), hash_equal_(*this), keys_(table.keys_.size(), hash_func_, hash_equal_) { keys_.insert(table.keys_.begin(), table.keys_.end()); } I FindId(const T &entry, bool insert = true) { if ((*selector_)(entry)) { // Uses the vector if selector_(entry) == true. uint64 fp = (*fp_)(entry); if (fp2id_.size() <= fp) fp2id_.resize(fp + 1, 0); if (fp2id_[fp] == 0) { // T not found. if (insert) { // Stores and assigns a new ID. id2entry_.push_back(entry); fp2id_[fp] = id2entry_.size(); } else { return -1; } } return fp2id_[fp] - 1; // NB: assoc_value = ID + 1. } else { // Uses the hash table otherwise. current_entry_ = &entry; const auto it = keys_.find(kCurrentKey); if (it == keys_.end()) { if (insert) { I key = id2entry_.size(); id2entry_.push_back(entry); keys_.insert(key); return key; } else { return -1; } } else { return *it; } } } const T &FindEntry(I s) const { return id2entry_[s]; } I Size() const { return id2entry_.size(); } const S &Selector() const { return *selector_; } const FP &Fingerprint() const { return *fp_; } const H &Hash() const { return *h_; } private: static constexpr I kCurrentKey = -1; static constexpr I kEmptyKey = -2; class HashFunc { public: explicit HashFunc(const VectorHashBiTable &ht) : ht_(&ht) {} size_t operator()(I k) const { if (k >= kCurrentKey) { return (*(ht_->h_))(ht_->Key2Entry(k)); } else { return 0; } } private: const VectorHashBiTable *ht_; }; class HashEqual { public: explicit HashEqual(const VectorHashBiTable &ht) : ht_(&ht) {} bool operator()(I k1, I k2) const { if (k1 >= kCurrentKey && k2 >= kCurrentKey) { return ht_->Key2Entry(k1) == ht_->Key2Entry(k2); } else { return k1 == k2; } } private: const VectorHashBiTable *ht_; }; using KeyHashSet = HashSet<I, HashFunc, HashEqual, HS>; const T &Key2Entry(I k) const { if (k == kCurrentKey) { return *current_entry_; } else { return id2entry_[k]; } } std::unique_ptr<S> selector_; // True if entry hashed into vector. std::unique_ptr<FP> fp_; // Fingerprint used for hashing into vector. std::unique_ptr<H> h_; // Hash funcion used for hashing into hash_set. std::vector<T> id2entry_; // Maps state IDs to entry. std::vector<I> fp2id_; // Maps entry fingerprints to IDs. // Compact implementation of the hash table mapping entries to state IDs // using the hash function h_. HashFunc hash_func_; HashEqual hash_equal_; KeyHashSet keys_; const T *current_entry_; }; template <class I, class T, class S, class FP, class H, HSType HS> constexpr I VectorHashBiTable<I, T, S, FP, H, HS>::kCurrentKey; template <class I, class T, class S, class FP, class H, HSType HS> constexpr I VectorHashBiTable<I, T, S, FP, H, HS>::kEmptyKey; // An implementation using a hash map for the entry to ID mapping. This version // permits erasing of arbitrary states. The entry T must have == defined and // its default constructor must produce a entry that will never be seen. F is // the hash function. template <class I, class T, class F> class ErasableBiTable { public: ErasableBiTable() : first_(0) {} I FindId(const T &entry, bool insert = true) { I &id_ref = entry2id_[entry]; if (id_ref == 0) { // T not found. if (insert) { // Stores and assigns a new ID. id2entry_.push_back(entry); id_ref = id2entry_.size() + first_; } else { return -1; } } return id_ref - 1; // NB: id_ref = ID + 1. } const T &FindEntry(I s) const { return id2entry_[s - first_]; } I Size() const { return id2entry_.size(); } void Erase(I s) { auto &ref = id2entry_[s - first_]; entry2id_.erase(ref); ref = empty_entry_; while (!id2entry_.empty() && id2entry_.front() == empty_entry_) { id2entry_.pop_front(); ++first_; } } private: std::unordered_map<T, I, F> entry2id_; std::deque<T> id2entry_; const T empty_entry_; I first_; // I of first element in the deque. }; } // namespace fst #endif // FST_BI_TABLE_H_ |