Blame view

tools/openfst-1.6.7/include/fst/compact-fst.h 51.7 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // FST Class for memory-efficient representation of common types of
  // FSTs: linear automata, acceptors, unweighted FSTs, ...
  
  #ifndef FST_COMPACT_FST_H_
  #define FST_COMPACT_FST_H_
  
  #include <climits>
  #include <iterator>
  #include <memory>
  #include <tuple>
  #include <utility>
  #include <vector>
  
  #include <fst/log.h>
  
  #include <fst/cache.h>
  #include <fst/expanded-fst.h>
  #include <fst/fst-decl.h>  // For optional argument declarations
  #include <fst/mapped-file.h>
  #include <fst/matcher.h>
  #include <fst/test-properties.h>
  #include <fst/util.h>
  
  
  namespace fst {
  
  struct CompactFstOptions : public CacheOptions {
    // The default caching behaviour is to do no caching. Most compactors are
    // cheap and therefore we save memory by not doing caching.
    CompactFstOptions() : CacheOptions(true, 0) {}
  
    explicit CompactFstOptions(const CacheOptions &opts) : CacheOptions(opts) {}
  };
  
  // New upcoming (Fst) Compactor interface - currently used internally
  // by CompactFstImpl.
  //
  // class Compactor {
  //  public:
  //   // Constructor from the Fst to be compacted.
  //   Compactor(const Fst<Arc> &fst, ...);
  //   // Copy constructor
  //   Compactor(const Compactor &compactor, bool safe = false)
  //   // Default constructor (optional, see comment below).
  //   Compactor();
  //
  //   // Returns the start state, number of states, and total number of arcs
  //   // of the compacted Fst
  //   StateId Start() const;
  //   StateId NumStates() const;
  //   size_t NumArcs() const;
  //
  //   // Accessor class for state attributes.
  //   class State {
  //    public:
  //     State();  // Required, corresponds to kNoStateId.
  //     State(const Compactor *c, StateId);  // Accessor for StateId 's'.
  //     StateId GetStateId() const;
  //     Weight Final() const;
  //     size_t NumArcs() const;
  //     Arc GetArc(size_t i) const;
  //   };
  //
  //   // Modifies 'state' accessor to provide access to state id 's'.
  //   void SetState(StateId s, State *state);
  //   // Tests whether 'fst' can be compacted by this compactor.
  //   bool IsCompatible(const Fst<A> &fst) const;
  //   // Return the properties that are always true for an fst
  //   // compacted using this compactor
  //   uint64 Properties() const;
  //   // Return a string identifying the type of compactor.
  //   static const string &Type();
  //   // Return true if an error has occured.
  //   bool Error() const;
  //   // Writes a compactor to a file.
  //   bool Write(std::ostream &strm, const FstWriteOptions &opts) const;
  //   // Reads a compactor from a file.
  //   static Compactor*Read(std::istream &strm, const FstReadOptions &opts,
  //                         const FstHeader &hdr);
  // };
  //
  
  // Old (Arc) Compactor Interface:
  //
  // The ArcCompactor class determines how arcs and final weights are compacted
  // and expanded.
  //
  // Final weights are treated as transitions to the superfinal state, i.e.,
  // ilabel = olabel = kNoLabel and nextstate = kNoStateId.
  //
  // There are two types of compactors:
  //
  // * Fixed out-degree compactors: 'compactor.Size()' returns a positive integer
  //   's'. An FST can be compacted by this compactor only if each state has
  //   exactly 's' outgoing transitions (counting a non-Zero() final weight as a
  //   transition). A typical example is a compactor for string FSTs, i.e.,
  //   's == 1'.
  //
  // * Variable out-degree compactors: 'compactor.Size() == -1'. There are no
  //   out-degree restrictions for these compactors.
  //
  // Interface:
  //
  // class ArcCompactor {
  //  public:
  //   // Element is the type of the compacted transitions.
  //   using Element = ...
  //
  //   // Returns the compacted representation of a transition 'arc'
  //   // at a state 's'.
  //   Element Compact(StateId s, const Arc &arc);
  //
  //   // Returns the transition at state 's' represented by the compacted
  //   // transition 'e'.
  //   Arc Expand(StateId s, const Element &e) const;
  //
  //   // Returns -1 for variable out-degree compactors, and the mandatory
  //   // out-degree otherwise.
  //   ssize_t Size() const;
  //
  //   // Tests whether an FST can be compacted by this compactor.
  //   bool Compatible(const Fst<A> &fst) const;
  //
  //   // Returns the properties that are always true for an FST compacted using
  //   // this compactor
  //   uint64 Properties() const;
  //
  //   // Returns a string identifying the type of compactor.
  //   static const string &Type();
  //
  //   // Writes a compactor to a file.
  //   bool Write(std::ostream &strm) const;
  //
  //   // Reads a compactor from a file.
  //   static ArcCompactor *Read(std::istream &strm);
  //
  //   // Default constructor (optional, see comment below).
  //   ArcCompactor();
  // };
  //
  // The default constructor is only required for FST_REGISTER to work (i.e.,
  // enabling Convert() and the command-line utilities to work with this new
  // compactor). However, a default constructor always needs to be specified for
  // this code to compile, but one can have it simply raise an error when called,
  // like so:
  //
  // Compactor::Compactor() {
  //   FSTERROR() << "Compactor: No default constructor";
  // }
  
  // Default implementation data for CompactFst, which can shared between
  // otherwise independent copies.
  //
  // The implementation contains two arrays: 'states_' and 'compacts_'.
  //
  // For fixed out-degree compactors, the 'states_' array is unallocated. The
  // 'compacts_' contains the compacted transitions. Its size is 'ncompacts_'.
  // The outgoing transitions at a given state are stored consecutively. For a
  // given state 's', its 'compactor.Size()' outgoing transitions (including
  // superfinal transition when 's' is final), are stored in position
  // ['s*compactor.Size()', '(s+1)*compactor.Size()').
  //
  // For variable out-degree compactors, the states_ array has size
  // 'nstates_ + 1' and contains pointers to positions into 'compacts_'. For a
  // given state 's', the compacted transitions of 's' are stored in positions
  // ['states_[s]', 'states_[s + 1]') in 'compacts_'. By convention,
  // 'states_[nstates_] == ncompacts_'.
  //
  // In both cases, the superfinal transitions (when 's' is final, i.e.,
  // 'Final(s) != Weight::Zero()') are stored first.
  //
  // The unsigned type U is used to represent indices into the compacts_ array.
  template <class Element, class Unsigned>
  class DefaultCompactStore {
   public:
    DefaultCompactStore()
        : states_(nullptr),
          compacts_(nullptr),
          nstates_(0),
          ncompacts_(0),
          narcs_(0),
          start_(kNoStateId),
          error_(false) {}
  
    template <class Arc, class Compactor>
    DefaultCompactStore(const Fst<Arc> &fst, const Compactor &compactor);
  
    template <class Iterator, class Compactor>
    DefaultCompactStore(const Iterator &begin, const Iterator &end,
                        const Compactor &compactor);
  
    ~DefaultCompactStore() {
      if (!states_region_) delete[] states_;
      if (!compacts_region_) delete[] compacts_;
    }
  
    template <class Compactor>
    static DefaultCompactStore<Element, Unsigned> *Read(
        std::istream &strm, const FstReadOptions &opts, const FstHeader &hdr,
        const Compactor &compactor);
  
    bool Write(std::ostream &strm, const FstWriteOptions &opts) const;
  
    Unsigned States(ssize_t i) const { return states_[i]; }
  
    const Element &Compacts(size_t i) const { return compacts_[i]; }
  
    size_t NumStates() const { return nstates_; }
  
    size_t NumCompacts() const { return ncompacts_; }
  
    size_t NumArcs() const { return narcs_; }
  
    ssize_t Start() const { return start_; }
  
    bool Error() const { return error_; }
  
    // Returns a string identifying the type of data storage container.
    static const string &Type();
  
   private:
    std::unique_ptr<MappedFile> states_region_;
    std::unique_ptr<MappedFile> compacts_region_;
    Unsigned *states_;
    Element *compacts_;
    size_t nstates_;
    size_t ncompacts_;
    size_t narcs_;
    ssize_t start_;
    bool error_;
  };
  
  template <class Element, class Unsigned>
  template <class Arc, class Compactor>
  DefaultCompactStore<Element, Unsigned>::DefaultCompactStore(
      const Fst<Arc> &fst, const Compactor &compactor)
      : states_(nullptr),
        compacts_(nullptr),
        nstates_(0),
        ncompacts_(0),
        narcs_(0),
        start_(kNoStateId),
        error_(false) {
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
    start_ = fst.Start();
    // Counts # of states and arcs.
    StateId nfinals = 0;
    for (StateIterator<Fst<Arc>> siter(fst); !siter.Done(); siter.Next()) {
      ++nstates_;
      const auto s = siter.Value();
      for (ArcIterator<Fst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) {
        ++narcs_;
      }
      if (fst.Final(s) != Weight::Zero()) ++nfinals;
    }
    if (compactor.Size() == -1) {
      states_ = new Unsigned[nstates_ + 1];
      ncompacts_ = narcs_ + nfinals;
      compacts_ = new Element[ncompacts_];
      states_[nstates_] = ncompacts_;
    } else {
      states_ = nullptr;
      ncompacts_ = nstates_ * compactor.Size();
      if ((narcs_ + nfinals) != ncompacts_) {
        FSTERROR() << "DefaultCompactStore: Compactor incompatible with FST";
        error_ = true;
        return;
      }
      compacts_ = new Element[ncompacts_];
    }
    size_t pos = 0;
    size_t fpos = 0;
    for (size_t s = 0; s < nstates_; ++s) {
      fpos = pos;
      if (compactor.Size() == -1) states_[s] = pos;
      if (fst.Final(s) != Weight::Zero()) {
        compacts_[pos++] = compactor.Compact(
            s, Arc(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
      }
      for (ArcIterator<Fst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) {
        compacts_[pos++] = compactor.Compact(s, aiter.Value());
      }
      if ((compactor.Size() != -1) && ((pos - fpos) != compactor.Size())) {
        FSTERROR() << "DefaultCompactStore: Compactor incompatible with FST";
        error_ = true;
        return;
      }
    }
    if (pos != ncompacts_) {
      FSTERROR() << "DefaultCompactStore: Compactor incompatible with FST";
      error_ = true;
      return;
    }
  }
  
  template <class Element, class Unsigned>
  template <class Iterator, class Compactor>
  DefaultCompactStore<Element, Unsigned>::DefaultCompactStore(
      const Iterator &begin, const Iterator &end, const Compactor &compactor)
      : states_(nullptr),
        compacts_(nullptr),
        nstates_(0),
        ncompacts_(0),
        narcs_(0),
        start_(kNoStateId),
        error_(false) {
    using Arc = typename Compactor::Arc;
    using Weight = typename Arc::Weight;
    if (compactor.Size() != -1) {
      ncompacts_ = std::distance(begin, end);
      if (compactor.Size() == 1) {
        // For strings, allows implicit final weight. Empty input is the empty
        // string.
        if (ncompacts_ == 0) {
          ++ncompacts_;
        } else {
          const auto arc =
              compactor.Expand(ncompacts_ - 1, *(begin + (ncompacts_ - 1)));
          if (arc.ilabel != kNoLabel) ++ncompacts_;
        }
      }
      if (ncompacts_ % compactor.Size()) {
        FSTERROR() << "DefaultCompactStore: Size of input container incompatible"
                   << " with compactor";
        error_ = true;
        return;
      }
      if (ncompacts_ == 0) return;
      start_ = 0;
      nstates_ = ncompacts_ / compactor.Size();
      compacts_ = new Element[ncompacts_];
      size_t i = 0;
      Iterator it = begin;
      for (; it != end; ++it, ++i) {
        compacts_[i] = *it;
        if (compactor.Expand(i, *it).ilabel != kNoLabel) ++narcs_;
      }
      if (i < ncompacts_) {
        compacts_[i] = compactor.Compact(
            i, Arc(kNoLabel, kNoLabel, Weight::One(), kNoStateId));
      }
    } else {
      if (std::distance(begin, end) == 0) return;
      // Count # of states, arcs and compacts.
      auto it = begin;
      for (size_t i = 0; it != end; ++it, ++i) {
        const auto arc = compactor.Expand(i, *it);
        if (arc.ilabel != kNoLabel) {
          ++narcs_;
          ++ncompacts_;
        } else {
          ++nstates_;
          if (arc.weight != Weight::Zero()) ++ncompacts_;
        }
      }
      start_ = 0;
      compacts_ = new Element[ncompacts_];
      states_ = new Unsigned[nstates_ + 1];
      states_[nstates_] = ncompacts_;
      size_t i = 0;
      size_t s = 0;
      for (it = begin; it != end; ++it) {
        const auto arc = compactor.Expand(i, *it);
        if (arc.ilabel != kNoLabel) {
          compacts_[i++] = *it;
        } else {
          states_[s++] = i;
          if (arc.weight != Weight::Zero()) compacts_[i++] = *it;
        }
      }
      if ((s != nstates_) || (i != ncompacts_)) {
        FSTERROR() << "DefaultCompactStore: Ill-formed input container";
        error_ = true;
        return;
      }
    }
  }
  
  template <class Element, class Unsigned>
  template <class Compactor>
  DefaultCompactStore<Element, Unsigned>
      *DefaultCompactStore<Element, Unsigned>::Read(std::istream &strm,
                                                    const FstReadOptions &opts,
                                                    const FstHeader &hdr,
                                                    const Compactor &compactor) {
    std::unique_ptr<DefaultCompactStore<Element, Unsigned>> data(
        new DefaultCompactStore<Element, Unsigned>());
    data->start_ = hdr.Start();
    data->nstates_ = hdr.NumStates();
    data->narcs_ = hdr.NumArcs();
    if (compactor.Size() == -1) {
      if ((hdr.GetFlags() & FstHeader::IS_ALIGNED) && !AlignInput(strm)) {
        LOG(ERROR) << "DefaultCompactStore::Read: Alignment failed: "
                   << opts.source;
        return nullptr;
      }
      auto b = (data->nstates_ + 1) * sizeof(Unsigned);
      data->states_region_.reset(MappedFile::Map(
          &strm, opts.mode == FstReadOptions::MAP, opts.source, b));
      if (!strm || !data->states_region_) {
        LOG(ERROR) << "DefaultCompactStore::Read: Read failed: " << opts.source;
        return nullptr;
      }
      data->states_ =
          static_cast<Unsigned *>(data->states_region_->mutable_data());
    } else {
      data->states_ = nullptr;
    }
    data->ncompacts_ = compactor.Size() == -1 ? data->states_[data->nstates_]
                                              : data->nstates_ * compactor.Size();
    if ((hdr.GetFlags() & FstHeader::IS_ALIGNED) && !AlignInput(strm)) {
      LOG(ERROR) << "DefaultCompactStore::Read: Alignment failed: "
                 << opts.source;
      return nullptr;
    }
    size_t b = data->ncompacts_ * sizeof(Element);
    data->compacts_region_.reset(
        MappedFile::Map(&strm, opts.mode == FstReadOptions::MAP, opts.source, b));
    if (!strm || !data->compacts_region_) {
      LOG(ERROR) << "DefaultCompactStore::Read: Read failed: " << opts.source;
      return nullptr;
    }
    data->compacts_ =
        static_cast<Element *>(data->compacts_region_->mutable_data());
    return data.release();
  }
  
  template <class Element, class Unsigned>
  bool DefaultCompactStore<Element, Unsigned>::Write(
      std::ostream &strm, const FstWriteOptions &opts) const {
    if (states_) {
      if (opts.align && !AlignOutput(strm)) {
        LOG(ERROR) << "DefaultCompactStore::Write: Alignment failed: "
                   << opts.source;
        return false;
      }
      strm.write(reinterpret_cast<char *>(states_),
                 (nstates_ + 1) * sizeof(Unsigned));
    }
    if (opts.align && !AlignOutput(strm)) {
      LOG(ERROR) << "DefaultCompactStore::Write: Alignment failed: "
                 << opts.source;
      return false;
    }
    strm.write(reinterpret_cast<char *>(compacts_), ncompacts_ * sizeof(Element));
    strm.flush();
    if (!strm) {
      LOG(ERROR) << "DefaultCompactStore::Write: Write failed: " << opts.source;
      return false;
    }
    return true;
  }
  
  template <class Element, class Unsigned>
  const string &DefaultCompactStore<Element, Unsigned>::Type() {
    static const string *const type = new string("compact");
    return *type;
  }
  
  template <class C, class U, class S> class DefaultCompactState;
  
  // Wraps an arc compactor and a compact store as a new Fst compactor.
  template <class C, class U,
            class S = DefaultCompactStore<typename C::Element, U>>
  class DefaultCompactor {
   public:
    using ArcCompactor = C;
    using Unsigned = U;
    using CompactStore = S;
    using Element = typename C::Element;
    using Arc = typename C::Arc;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
    using State = DefaultCompactState<C, U, S>;
    friend State;
  
    DefaultCompactor()
        : arc_compactor_(nullptr), compact_store_(nullptr) {}
  
    // Constructs from Fst.
    DefaultCompactor(const Fst<Arc> &fst,
                     std::shared_ptr<ArcCompactor> arc_compactor)
        : arc_compactor_(std::move(arc_compactor)),
          compact_store_(std::make_shared<S>(fst, *arc_compactor_)) {}
  
    DefaultCompactor(const Fst<Arc> &fst,
                     std::shared_ptr<DefaultCompactor<C, U, S>> compactor)
        : arc_compactor_(compactor->arc_compactor_),
          compact_store_(compactor->compact_store_ == nullptr ?
                         std::make_shared<S>(fst, *arc_compactor_) :
                         compactor->compact_store_) {}
  
    // Constructs from CompactStore.
    DefaultCompactor(std::shared_ptr<ArcCompactor> arc_compactor,
                     std::shared_ptr<CompactStore> compact_store)
        : arc_compactor_(std::move(arc_compactor)),
          compact_store_(std::move(compact_store)) {}
  
    // Constructs from set of compact elements (when arc_compactor.Size() != -1).
    template <class Iterator>
    DefaultCompactor(const Iterator &b, const Iterator &e,
                     std::shared_ptr<C> arc_compactor)
        : arc_compactor_(std::move(arc_compactor)),
          compact_store_(std::make_shared<S>(b, e, *arc_compactor_)) {}
  
    // Copy constructor.
    DefaultCompactor(const DefaultCompactor<C, U, S> &compactor)
        : arc_compactor_(std::make_shared<C>(*compactor.GetArcCompactor())),
          compact_store_(compactor.SharedCompactStore()) {}
  
    template <class OtherC>
    explicit DefaultCompactor(const DefaultCompactor<OtherC, U, S> &compactor)
        : arc_compactor_(std::make_shared<C>(*compactor.GetArcCompactor())),
          compact_store_(compactor.SharedCompactStore()) {}
  
    StateId Start() const { return compact_store_->Start(); }
    StateId NumStates() const { return compact_store_->NumStates(); }
    size_t NumArcs() const { return compact_store_->NumArcs(); }
  
    void SetState(StateId s, State *state) const {
      if (state->GetStateId() != s) state->Set(this, s);
    }
  
    static DefaultCompactor<C, U, S> *Read(std::istream &strm,
                                           const FstReadOptions &opts,
                                           const FstHeader &hdr) {
      std::shared_ptr<C> arc_compactor(C::Read(strm));
      if (arc_compactor == nullptr) return nullptr;
      std::shared_ptr<S> compact_store(S::Read(strm, opts, hdr, *arc_compactor));
      if (compact_store == nullptr) return nullptr;
      return new DefaultCompactor<C, U, S>(arc_compactor, compact_store);
    }
  
    bool Write(std::ostream &strm, const FstWriteOptions &opts) const {
      return arc_compactor_->Write(strm) && compact_store_->Write(strm, opts);
    }
  
    uint64 Properties() const { return arc_compactor_->Properties(); }
  
    bool IsCompatible(const Fst<Arc> &fst) const {
      return arc_compactor_->Compatible(fst);
    }
  
    bool Error() const { return compact_store_->Error(); }
  
    bool HasFixedOutdegree() const { return arc_compactor_->Size() != -1; }
  
    static const string &Type() {
      static const string *const type = [] {
        string type = "compact";
        if (sizeof(U) != sizeof(uint32)) type += std::to_string(8 * sizeof(U));
        type += "_";
        type += C::Type();
        if (CompactStore::Type() != "compact") {
          type += "_";
          type += CompactStore::Type();
        }
        return new string(type);
      }();
      return *type;
    }
  
    const ArcCompactor *GetArcCompactor() const { return arc_compactor_.get(); }
    CompactStore *GetCompactStore() const { return compact_store_.get(); }
  
    std::shared_ptr<ArcCompactor> SharedArcCompactor() const {
      return arc_compactor_;
    }
  
    std::shared_ptr<CompactStore> SharedCompactStore() const {
      return compact_store_;
    }
  
    // TODO(allauzen): remove dependencies on this method and make private.
    Arc ComputeArc(StateId s, Unsigned i, uint32 f) const {
      return arc_compactor_->Expand(s, compact_store_->Compacts(i), f);
    }
  
   private:
    std::pair<Unsigned, Unsigned> CompactsRange(StateId s) const {
      std::pair<size_t, size_t> range;
      if (HasFixedOutdegree()) {
        range.first = s * arc_compactor_->Size();
        range.second = arc_compactor_->Size();
      } else {
        range.first = compact_store_->States(s);
        range.second = compact_store_->States(s + 1) - range.first;
      }
      return range;
    }
  
   private:
    std::shared_ptr<ArcCompactor> arc_compactor_;
    std::shared_ptr<CompactStore> compact_store_;
  };
  
  // Default implementation of state attributes accessor class for
  // DefaultCompactor. Use of efficient specialization strongly encouraged.
  template <class C, class U, class S>
  class DefaultCompactState {
   public:
    using Arc = typename C::Arc;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    DefaultCompactState() = default;
  
    DefaultCompactState(const DefaultCompactor<C, U, S> *compactor, StateId s)
        : compactor_(compactor),
          s_(s),
          range_(compactor->CompactsRange(s)),
          has_final_(
              range_.second != 0 &&
              compactor->ComputeArc(s, range_.first,
                                   kArcILabelValue).ilabel == kNoLabel) {
      if (has_final_) {
        ++range_.first;
        --range_.second;
      }
    }
  
    void Set(const DefaultCompactor<C, U, S> *compactor, StateId s) {
      compactor_ = compactor;
      s_ = s;
      range_ = compactor->CompactsRange(s);
      if (range_.second != 0 &&
          compactor->ComputeArc(s, range_.first, kArcILabelValue).ilabel
          == kNoLabel) {
        has_final_ = true;
        ++range_.first;
        --range_.second;
      } else {
        has_final_ = false;
      }
    }
  
    StateId GetStateId() const { return s_; }
  
    Weight Final() const {
      if (!has_final_) return Weight::Zero();
      return compactor_->ComputeArc(s_, range_.first - 1, kArcWeightValue).weight;
    }
  
    size_t NumArcs() const { return range_.second; }
  
    Arc GetArc(size_t i, uint32 f) const {
      return compactor_->ComputeArc(s_, range_.first + i, f);
    }
  
   private:
    const DefaultCompactor<C, U, S> *compactor_ = nullptr;  // borrowed ref.
    StateId s_ = kNoStateId;
    std::pair<U, U> range_ = {0, 0};
    bool has_final_ = false;
  };
  
  // Specialization for DefaultCompactStore.
  template <class C, class U>
  class DefaultCompactState<C, U, DefaultCompactStore<typename C::Element, U>> {
   public:
    using Arc = typename C::Arc;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
    using CompactStore = DefaultCompactStore<typename C::Element, U>;
  
    DefaultCompactState() = default;
  
    DefaultCompactState(
        const DefaultCompactor<C, U, CompactStore> *compactor, StateId s)
        : arc_compactor_(compactor->GetArcCompactor()), s_(s) {
      Init(compactor);
    }
  
    void Set(const DefaultCompactor<C, U, CompactStore> *compactor, StateId s) {
      arc_compactor_ = compactor->GetArcCompactor();
      s_ = s;
      has_final_ = false;
      Init(compactor);
    }
  
    StateId GetStateId() const { return s_; }
  
    Weight Final() const {
      if (!has_final_) return Weight::Zero();
      return arc_compactor_->Expand(s_, *(compacts_ - 1), kArcWeightValue).weight;
    }
  
    size_t NumArcs() const { return num_arcs_; }
  
    Arc GetArc(size_t i, uint32 f) const {
      return arc_compactor_->Expand(s_, compacts_[i], f);
    }
  
   private:
    void Init(const DefaultCompactor<C, U, CompactStore> *compactor) {
      const auto *store = compactor->GetCompactStore();
      U offset;
      if (!compactor->HasFixedOutdegree()) {  // Variable out-degree compactor.
        offset = store->States(s_);
        num_arcs_ = store->States(s_ + 1) - offset;
      } else {  // Fixed out-degree compactor.
        offset = s_ * arc_compactor_->Size();
        num_arcs_ = arc_compactor_->Size();
      }
      if (num_arcs_ > 0) {
        compacts_ = &(store->Compacts(offset));
        if (arc_compactor_->Expand(s_, *compacts_, kArcILabelValue).ilabel
            == kNoStateId) {
          ++compacts_;
          --num_arcs_;
          has_final_ = true;
        }
      }
    }
  
   private:
    const C *arc_compactor_ = nullptr;               // Borrowed reference.
    const typename C::Element *compacts_ = nullptr;  // Borrowed reference.
    StateId s_ = kNoStateId;
    U num_arcs_ = 0;
    bool has_final_ = false;
  };
  
  template <class Arc, class ArcCompactor, class Unsigned, class CompactStore,
            class CacheStore>
  class CompactFst;
  
  template <class F, class G>
  void Cast(const F &, G *);
  
  namespace internal {
  
  // Implementation class for CompactFst, which contains parametrizeable
  // Fst data storage (DefaultCompactStore by default) and Fst cache.
  template <class Arc, class C, class CacheStore = DefaultCacheStore<Arc>>
  class CompactFstImpl
      : public CacheBaseImpl<typename CacheStore::State, CacheStore> {
   public:
    using Weight = typename Arc::Weight;
    using StateId = typename Arc::StateId;
    using Compactor = C;
  
    using FstImpl<Arc>::SetType;
    using FstImpl<Arc>::SetProperties;
    using FstImpl<Arc>::Properties;
    using FstImpl<Arc>::SetInputSymbols;
    using FstImpl<Arc>::SetOutputSymbols;
    using FstImpl<Arc>::WriteHeader;
  
    using ImplBase = CacheBaseImpl<typename CacheStore::State, CacheStore>;
    using ImplBase::PushArc;
    using ImplBase::HasArcs;
    using ImplBase::HasFinal;
    using ImplBase::HasStart;
    using ImplBase::SetArcs;
    using ImplBase::SetFinal;
    using ImplBase::SetStart;
  
    CompactFstImpl()
        : ImplBase(CompactFstOptions()),
          compactor_() {
      SetType(Compactor::Type());
      SetProperties(kNullProperties | kStaticProperties);
    }
  
    CompactFstImpl(const Fst<Arc> &fst, std::shared_ptr<Compactor> compactor,
                   const CompactFstOptions &opts)
        : ImplBase(opts),
          compactor_(std::make_shared<Compactor>(fst, compactor)) {
      SetType(Compactor::Type());
      SetInputSymbols(fst.InputSymbols());
      SetOutputSymbols(fst.OutputSymbols());
      if (compactor_->Error()) SetProperties(kError, kError);
      uint64 copy_properties = fst.Properties(kMutable, false) ?
          fst.Properties(kCopyProperties, true):
          CheckProperties(fst,
                          kCopyProperties & ~kWeightedCycles & ~kUnweightedCycles,
                          kCopyProperties);
      if ((copy_properties & kError) || !compactor_->IsCompatible(fst)) {
        FSTERROR() << "CompactFstImpl: Input Fst incompatible with compactor";
        SetProperties(kError, kError);
        return;
      }
      SetProperties(copy_properties | kStaticProperties);
    }
  
    CompactFstImpl(std::shared_ptr<Compactor> compactor,
                   const CompactFstOptions &opts)
        : ImplBase(opts),
          compactor_(compactor) {
      SetType(Compactor::Type());
      SetProperties(kStaticProperties | compactor_->Properties());
      if (compactor_->Error()) SetProperties(kError, kError);
    }
  
    CompactFstImpl(const CompactFstImpl<Arc, Compactor, CacheStore> &impl)
        : ImplBase(impl),
          compactor_(impl.compactor_ == nullptr ?
                     std::make_shared<Compactor>() :
                     std::make_shared<Compactor>(*impl.compactor_)) {
      SetType(impl.Type());
      SetProperties(impl.Properties());
      SetInputSymbols(impl.InputSymbols());
      SetOutputSymbols(impl.OutputSymbols());
    }
  
    // Allows to change the cache store from OtherI to I.
    template <class OtherCacheStore>
    CompactFstImpl(const CompactFstImpl<Arc, Compactor, OtherCacheStore> &impl)
        : ImplBase(CacheOptions(impl.GetCacheGc(), impl.GetCacheLimit())),
          compactor_(impl.compactor_ == nullptr ?
                     std::make_shared<Compactor>() :
                     std::make_shared<Compactor>(*impl.compactor_)) {
      SetType(impl.Type());
      SetProperties(impl.Properties());
      SetInputSymbols(impl.InputSymbols());
      SetOutputSymbols(impl.OutputSymbols());
    }
  
    StateId Start() {
      if (!HasStart()) SetStart(compactor_->Start());
      return ImplBase::Start();
    }
  
    Weight Final(StateId s) {
      if (HasFinal(s)) return ImplBase::Final(s);
      compactor_->SetState(s, &state_);
      return state_.Final();
    }
  
    StateId NumStates() const {
      if (Properties(kError)) return 0;
      return compactor_->NumStates();
    }
  
    size_t NumArcs(StateId s) {
      if (HasArcs(s)) return ImplBase::NumArcs(s);
      compactor_->SetState(s, &state_);
      return state_.NumArcs();
    }
  
    size_t NumInputEpsilons(StateId s) {
      if (!HasArcs(s) && !Properties(kILabelSorted)) Expand(s);
      if (HasArcs(s)) return ImplBase::NumInputEpsilons(s);
      return CountEpsilons(s, false);
    }
  
    size_t NumOutputEpsilons(StateId s) {
      if (!HasArcs(s) && !Properties(kOLabelSorted)) Expand(s);
      if (HasArcs(s)) return ImplBase::NumOutputEpsilons(s);
      return CountEpsilons(s, true);
    }
  
    size_t CountEpsilons(StateId s, bool output_epsilons) {
      compactor_->SetState(s, &state_);
      const uint32 f = output_epsilons ? kArcOLabelValue : kArcILabelValue;
      size_t num_eps = 0;
      for (size_t i = 0; i < state_.NumArcs(); ++i) {
        const auto& arc = state_.GetArc(i, f);
        const auto label = output_epsilons ? arc.olabel : arc.ilabel;
        if (label == 0)
          ++num_eps;
        else if (label > 0)
          break;
      }
      return num_eps;
    }
  
    static CompactFstImpl<Arc, Compactor, CacheStore> *Read(
        std::istream &strm, const FstReadOptions &opts) {
      std::unique_ptr<CompactFstImpl<Arc, Compactor, CacheStore>> impl(
        new CompactFstImpl<Arc, Compactor, CacheStore>());
      FstHeader hdr;
      if (!impl->ReadHeader(strm, opts, kMinFileVersion, &hdr)) {
        return nullptr;
      }
      // Ensures compatibility.
      if (hdr.Version() == kAlignedFileVersion) {
        hdr.SetFlags(hdr.GetFlags() | FstHeader::IS_ALIGNED);
      }
      impl->compactor_ = std::shared_ptr<Compactor>(
          Compactor::Read(strm, opts, hdr));
      if (!impl->compactor_) {
        return nullptr;
      }
      return impl.release();
    }
  
    bool Write(std::ostream &strm, const FstWriteOptions &opts) const {
      FstHeader hdr;
      hdr.SetStart(compactor_->Start());
      hdr.SetNumStates(compactor_->NumStates());
      hdr.SetNumArcs(compactor_->NumArcs());
      // Ensures compatibility.
      const auto file_version = opts.align ? kAlignedFileVersion : kFileVersion;
      WriteHeader(strm, opts, file_version, &hdr);
      return compactor_->Write(strm, opts);
    }
  
    // Provides information needed for generic state iterator.
    void InitStateIterator(StateIteratorData<Arc> *data) const {
      data->base = nullptr;
      data->nstates = compactor_->NumStates();
    }
  
    void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) {
      if (!HasArcs(s)) Expand(s);
      ImplBase::InitArcIterator(s, data);
    }
  
    void Expand(StateId s) {
      compactor_->SetState(s, &state_);
      for (size_t i = 0; i < state_.NumArcs(); ++i)
        PushArc(s, state_.GetArc(i, kArcValueFlags));
      SetArcs(s);
      if (!HasFinal(s)) SetFinal(s, state_.Final());
    }
  
    const Compactor *GetCompactor() const { return compactor_.get(); }
    std::shared_ptr<Compactor> SharedCompactor() const { return compactor_; }
    void SetCompactor(std::shared_ptr<Compactor> compactor) {
      // TODO(allauzen): is this correct? is this needed?
      // TODO(allauzen): consider removing and forcing this through direct calls
      // to compactor.
      compactor_ = compactor;
    }
  
    // Properties always true of this FST class.
    static constexpr uint64 kStaticProperties = kExpanded;
  
   protected:
    template <class OtherArc, class OtherCompactor, class OtherCacheStore>
    explicit CompactFstImpl(
      const CompactFstImpl<OtherArc, OtherCompactor, OtherCacheStore> &impl)
      : compactor_(std::make_shared<Compactor>(*impl.GetCompactor())) {
      SetType(impl.Type());
      SetProperties(impl.Properties());
      SetInputSymbols(impl.InputSymbols());
      SetOutputSymbols(impl.OutputSymbols());
    }
  
   private:
    // Allows access during write.
    template <class AnyArc, class ArcCompactor, class Unsigned,
              class CompactStore, class AnyCacheStore>
    friend class ::fst::CompactFst;  // allow access during write.
  
    // Current unaligned file format version.
    static constexpr int kFileVersion = 2;
    // Current aligned file format version.
    static constexpr int kAlignedFileVersion = 1;
    // Minimum file format version supported.
    static constexpr int kMinFileVersion = 1;
  
    std::shared_ptr<Compactor> compactor_;
    typename Compactor::State state_;
  };
  
  template <class Arc, class Compactor, class CacheStore>
  constexpr uint64 CompactFstImpl<Arc, Compactor, CacheStore>::kStaticProperties;
  
  template <class Arc, class Compactor, class CacheStore>
  constexpr int CompactFstImpl<Arc, Compactor, CacheStore>::kFileVersion;
  
  template <class Arc, class Compactor, class CacheStore>
  constexpr int CompactFstImpl<Arc, Compactor, CacheStore>::kAlignedFileVersion;
  
  template <class Arc, class Compactor, class CacheStore>
  constexpr int CompactFstImpl<Arc, Compactor, CacheStore>::kMinFileVersion;
  
  }  // namespace internal
  
  // This class attaches interface to implementation and handles reference
  // counting, delegating most methods to ImplToExpandedFst. The Unsigned type
  // is used to represent indices into the compact arc array. (Template
  // argument defaults are declared in fst-decl.h.)
  template <class A, class ArcCompactor, class Unsigned, class CompactStore,
            class CacheStore>
  class CompactFst
      : public ImplToExpandedFst<internal::CompactFstImpl<
            A,
            DefaultCompactor<ArcCompactor, Unsigned, CompactStore>,
            CacheStore>> {
   public:
    template <class F, class G>
    void friend Cast(const F &, G *);
  
    using Arc = A;
    using StateId = typename A::StateId;
    using Compactor = DefaultCompactor<ArcCompactor, Unsigned, CompactStore>;
    using Impl = internal::CompactFstImpl<A, Compactor, CacheStore>;
    using Store = CacheStore;  // for CacheArcIterator
  
    friend class StateIterator<
        CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>>;
    friend class ArcIterator<
        CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>>;
  
    CompactFst() : ImplToExpandedFst<Impl>(std::make_shared<Impl>()) {}
  
    // If data is not nullptr, it is assumed to be already initialized.
    explicit CompactFst(
        const Fst<A> &fst,
        const ArcCompactor &compactor = ArcCompactor(),
        const CompactFstOptions &opts = CompactFstOptions(),
        std::shared_ptr<CompactStore> data = std::shared_ptr<CompactStore>())
        : ImplToExpandedFst<Impl>(
              std::make_shared<Impl>(
                  fst,
                  std::make_shared<Compactor>(
                      std::make_shared<ArcCompactor>(compactor), data),
                  opts)) {}
  
    // If data is not nullptr, it is assumed to be already initialized.
    CompactFst(
        const Fst<Arc> &fst,
        std::shared_ptr<ArcCompactor> compactor,
        const CompactFstOptions &opts = CompactFstOptions(),
        std::shared_ptr<CompactStore> data = std::shared_ptr<CompactStore>())
        : ImplToExpandedFst<Impl>(
              std::make_shared<Impl>(fst,
                                     std::make_shared<Compactor>(compactor, data),
                                     opts)) {}
  
    // The following 2 constructors take as input two iterators delimiting a set
    // of (already) compacted transitions, starting with the transitions out of
    // the initial state. The format of the input differs for fixed out-degree
    // and variable out-degree compactors.
    //
    // - For fixed out-degree compactors, the final weight (encoded as a
    // compacted transition) needs to be given only for final states. All strings
    // (compactor of size 1) will be assume to be terminated by a final state
    // even when the final state is not implicitely given.
    //
    // - For variable out-degree compactors, the final weight (encoded as a
    // compacted transition) needs to be given for all states and must appeared
    // first in the list (for state s, final weight of s, followed by outgoing
    // transitons in s).
    //
    // These 2 constructors allows the direct construction of a CompactFst
    // without first creating a more memory-hungry regular FST. This is useful
    // when memory usage is severely constrained.
    template <class Iterator>
    explicit CompactFst(const Iterator &begin, const Iterator &end,
                        const ArcCompactor &compactor = ArcCompactor(),
                        const CompactFstOptions &opts = CompactFstOptions())
        : ImplToExpandedFst<Impl>(
              std::make_shared<Impl>(
                  std::make_shared<Compactor>(
                      begin, end, std::make_shared<ArcCompactor>(compactor)),
                  opts)) {}
  
    template <class Iterator>
    CompactFst(const Iterator &begin, const Iterator &end,
               std::shared_ptr<ArcCompactor> compactor,
               const CompactFstOptions &opts = CompactFstOptions())
        : ImplToExpandedFst<Impl>(
              std::make_shared<Impl>(
                  std::make_shared<Compactor>(begin, end, compactor), opts)) {}
  
    // See Fst<>::Copy() for doc.
    CompactFst(
        const CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>
        &fst,
        bool safe = false)
        : ImplToExpandedFst<Impl>(fst, safe) {}
  
    // Get a copy of this CompactFst. See Fst<>::Copy() for further doc.
    CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore> *Copy(
        bool safe = false) const override {
      return new CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>(
          *this, safe);
    }
  
    // Read a CompactFst from an input stream; return nullptr on error
    static CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore> *Read(
        std::istream &strm, const FstReadOptions &opts) {
      auto *impl = Impl::Read(strm, opts);
      return impl ? new CompactFst<A, ArcCompactor, Unsigned, CompactStore,
                                   CacheStore>(std::shared_ptr<Impl>(impl))
                  : nullptr;
    }
  
    // Read a CompactFst from a file; return nullptr on error
    // Empty filename reads from standard input
    static CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore> *Read(
        const string &filename) {
      auto *impl = ImplToExpandedFst<Impl>::Read(filename);
      return impl ? new CompactFst<A, ArcCompactor, Unsigned, CompactStore,
                                   CacheStore>(std::shared_ptr<Impl>(impl))
                  : nullptr;
    }
  
    bool Write(std::ostream &strm, const FstWriteOptions &opts) const override {
      return GetImpl()->Write(strm, opts);
    }
  
    bool Write(const string &filename) const override {
      return Fst<Arc>::WriteFile(filename);
    }
  
    template <class FST>
    static bool WriteFst(const FST &fst, const ArcCompactor &compactor,
                         std::ostream &strm, const FstWriteOptions &opts);
  
    void InitStateIterator(StateIteratorData<Arc> *data) const override {
      GetImpl()->InitStateIterator(data);
    }
  
    void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override {
      GetMutableImpl()->InitArcIterator(s, data);
    }
  
    MatcherBase<Arc> *InitMatcher(MatchType match_type) const override {
      return new SortedMatcher<
          CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>>(
          *this, match_type);
    }
  
    template <class Iterator>
    void SetCompactElements(const Iterator &b, const Iterator &e) {
      GetMutableImpl()->SetCompactor(std::make_shared<Compactor>(
          b, e, std::make_shared<ArcCompactor>()));
    }
  
   private:
    using ImplToFst<Impl, ExpandedFst<Arc>>::GetImpl;
    using ImplToFst<Impl, ExpandedFst<Arc>>::GetMutableImpl;
  
    explicit CompactFst(std::shared_ptr<Impl> impl)
        : ImplToExpandedFst<Impl>(impl) {}
  
    // Use overloading to extract the type of the argument.
    static Impl *GetImplIfCompactFst(
        const CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>
            &compact_fst) {
      return compact_fst.GetImpl();
    }
  
    // This does not give privileged treatment to subclasses of CompactFst.
    template <typename NonCompactFst>
    static Impl *GetImplIfCompactFst(const NonCompactFst &fst) {
      return nullptr;
    }
  
    CompactFst &operator=(const CompactFst &fst) = delete;
  };
  
  // Writes FST in Compact format, with a possible pass over the machine before
  // writing to compute the number of states and arcs.
  template <class A, class ArcCompactor, class Unsigned, class CompactStore,
            class CacheStore>
  template <class FST>
  bool CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>::WriteFst(
      const FST &fst, const ArcCompactor &compactor, std::ostream &strm,
      const FstWriteOptions &opts) {
    using Arc = A;
    using Weight = typename A::Weight;
    using Element = typename ArcCompactor::Element;
    const auto file_version =
        opts.align ? Impl::kAlignedFileVersion : Impl::kFileVersion;
    size_t num_arcs = -1;
    size_t num_states = -1;
    auto first_pass_compactor = compactor;
    if (auto *impl = GetImplIfCompactFst(fst)) {
      num_arcs = impl->GetCompactor()->GetCompactStore()->NumArcs();
      num_states = impl->GetCompactor()->GetCompactStore()->NumStates();
      first_pass_compactor = *impl->GetCompactor()->GetArcCompactor();
    } else {
      // A first pass is needed to compute the state of the compactor, which
      // is saved ahead of the rest of the data structures. This unfortunately
      // means forcing a complete double compaction when writing in this format.
      // TODO(allauzen): eliminate mutable state from compactors.
      num_arcs = 0;
      num_states = 0;
      for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
        const auto s = siter.Value();
        ++num_states;
        if (fst.Final(s) != Weight::Zero()) {
          first_pass_compactor.Compact(
              s, Arc(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
        }
        for (ArcIterator<FST> aiter(fst, s); !aiter.Done(); aiter.Next()) {
          ++num_arcs;
          first_pass_compactor.Compact(s, aiter.Value());
        }
      }
    }
    FstHeader hdr;
    hdr.SetStart(fst.Start());
    hdr.SetNumStates(num_states);
    hdr.SetNumArcs(num_arcs);
    string type = "compact";
    if (sizeof(Unsigned) != sizeof(uint32)) {
      type += std::to_string(CHAR_BIT * sizeof(Unsigned));
    }
    type += "_";
    type += ArcCompactor::Type();
    if (CompactStore::Type() != "compact") {
      type += "_";
      type += CompactStore::Type();
    }
    const auto copy_properties = fst.Properties(kCopyProperties, true);
    if ((copy_properties & kError) || !compactor.Compatible(fst)) {
      FSTERROR() << "Fst incompatible with compactor";
      return false;
    }
    uint64 properties = copy_properties | Impl::kStaticProperties;
    internal::FstImpl<Arc>::WriteFstHeader(fst, strm, opts, file_version, type,
                                           properties, &hdr);
    first_pass_compactor.Write(strm);
    if (first_pass_compactor.Size() == -1) {
      if (opts.align && !AlignOutput(strm)) {
        LOG(ERROR) << "CompactFst::Write: Alignment failed: " << opts.source;
        return false;
      }
      Unsigned compacts = 0;
      for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
        const auto s = siter.Value();
        strm.write(reinterpret_cast<const char *>(&compacts), sizeof(compacts));
        if (fst.Final(s) != Weight::Zero()) {
          ++compacts;
        }
        compacts += fst.NumArcs(s);
      }
      strm.write(reinterpret_cast<const char *>(&compacts), sizeof(compacts));
    }
    if (opts.align && !AlignOutput(strm)) {
      LOG(ERROR) << "Could not align file during write after writing states";
    }
    const auto &second_pass_compactor = compactor;
    Element element;
    for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
      const auto s = siter.Value();
      if (fst.Final(s) != Weight::Zero()) {
        element = second_pass_compactor.Compact(
            s, A(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
        strm.write(reinterpret_cast<const char *>(&element), sizeof(element));
      }
      for (ArcIterator<FST> aiter(fst, s); !aiter.Done(); aiter.Next()) {
        element = second_pass_compactor.Compact(s, aiter.Value());
        strm.write(reinterpret_cast<const char *>(&element), sizeof(element));
      }
    }
    strm.flush();
    if (!strm) {
      LOG(ERROR) << "CompactFst write failed: " << opts.source;
      return false;
    }
    return true;
  }
  
  // Specialization for CompactFst; see generic version in fst.h for sample
  // usage (but use the CompactFst type!). This version should inline.
  template <class Arc, class ArcCompactor, class Unsigned, class CompactStore,
            class CacheStore>
  class StateIterator<
      CompactFst<Arc, ArcCompactor, Unsigned, CompactStore, CacheStore>> {
   public:
    using StateId = typename Arc::StateId;
  
    explicit StateIterator(
        const CompactFst<Arc, ArcCompactor, Unsigned, CompactStore,
                         CacheStore> &fst)
        : nstates_(fst.GetImpl()->NumStates()), s_(0) {}
  
    bool Done() const { return s_ >= nstates_; }
  
    StateId Value() const { return s_; }
  
    void Next() { ++s_; }
  
    void Reset() { s_ = 0; }
  
   private:
    StateId nstates_;
    StateId s_;
  };
  
  // Specialization for CompactFst. Never caches,
  // always iterates over the underlying compact elements.
  template <class Arc, class ArcCompactor, class Unsigned,
            class CompactStore, class CacheStore>
  class ArcIterator<CompactFst<
      Arc, ArcCompactor, Unsigned, CompactStore, CacheStore>> {
   public:
    using StateId = typename Arc::StateId;
    using Element = typename ArcCompactor::Element;
    using Compactor = DefaultCompactor<ArcCompactor, Unsigned, CompactStore>;
    using State = typename Compactor::State;
  
    ArcIterator(const CompactFst<Arc, ArcCompactor, Unsigned, CompactStore,
                                 CacheStore> &fst,
                StateId s)
        : state_(fst.GetImpl()->GetCompactor(), s),
          pos_(0),
          flags_(kArcValueFlags) {}
  
    bool Done() const { return pos_ >= state_.NumArcs(); }
  
    const Arc &Value() const {
      arc_ = state_.GetArc(pos_, flags_);
      return arc_;
    }
  
    void Next() { ++pos_; }
  
    size_t Position() const { return pos_; }
  
    void Reset() { pos_ = 0; }
  
    void Seek(size_t pos) { pos_ = pos; }
  
    uint32 Flags() const { return flags_; }
  
    void SetFlags(uint32 f, uint32 m) {
      flags_ &= ~m;
      flags_ |= (f & kArcValueFlags);
    }
  
   private:
    State state_;
    size_t pos_;
    mutable Arc arc_;
    uint32 flags_;
  };
  
  // ArcCompactor for unweighted string FSTs.
  template <class A>
  class StringCompactor {
   public:
    using Arc = A;
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    using Element = Label;
  
    Element Compact(StateId s, const Arc &arc) const { return arc.ilabel; }
  
    Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
      return Arc(p, p, Weight::One(), p != kNoLabel ? s + 1 : kNoStateId);
    }
  
    constexpr ssize_t Size() const { return 1; }
  
    constexpr uint64 Properties() const {
      return kString | kAcceptor | kUnweighted;
    }
  
    bool Compatible(const Fst<Arc> &fst) const {
      const auto props = Properties();
      return fst.Properties(props, true) == props;
    }
  
    static const string &Type() {
      static const string *const type = new string("string");
      return *type;
    }
  
    bool Write(std::ostream &strm) const { return true; }
  
    static StringCompactor *Read(std::istream &strm) {
      return new StringCompactor;
    }
  };
  
  // ArcCompactor for weighted string FSTs.
  template <class A>
  class WeightedStringCompactor {
   public:
    using Arc = A;
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    using Element = std::pair<Label, Weight>;
  
    Element Compact(StateId s, const Arc &arc) const {
      return std::make_pair(arc.ilabel, arc.weight);
    }
  
    Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
      return Arc(p.first, p.first, p.second,
                 p.first != kNoLabel ? s + 1 : kNoStateId);
    }
  
    constexpr ssize_t Size() const { return 1; }
  
    constexpr uint64 Properties() const { return kString | kAcceptor; }
  
    bool Compatible(const Fst<Arc> &fst) const {
      const auto props = Properties();
      return fst.Properties(props, true) == props;
    }
  
    static const string &Type() {
      static const string *const type = new string("weighted_string");
      return *type;
    }
  
    bool Write(std::ostream &strm) const { return true; }
  
    static WeightedStringCompactor *Read(std::istream &strm) {
      return new WeightedStringCompactor;
    }
  };
  
  // ArcCompactor for unweighted acceptor FSTs.
  template <class A>
  class UnweightedAcceptorCompactor {
   public:
    using Arc = A;
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    using Element = std::pair<Label, StateId>;
  
    Element Compact(StateId s, const Arc &arc) const {
      return std::make_pair(arc.ilabel, arc.nextstate);
    }
  
    Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
      return Arc(p.first, p.first, Weight::One(), p.second);
    }
  
    constexpr ssize_t Size() const { return -1; }
  
    constexpr uint64 Properties() const { return kAcceptor | kUnweighted; }
  
    bool Compatible(const Fst<Arc> &fst) const {
      const auto props = Properties();
      return fst.Properties(props, true) == props;
    }
  
    static const string &Type() {
      static const string *const type = new string("unweighted_acceptor");
      return *type;
    }
  
    bool Write(std::ostream &strm) const { return true; }
  
    static UnweightedAcceptorCompactor *Read(std::istream &istrm) {
      return new UnweightedAcceptorCompactor;
    }
  };
  
  // ArcCompactor for weighted acceptor FSTs.
  template <class A>
  class AcceptorCompactor {
   public:
    using Arc = A;
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    using Element = std::pair<std::pair<Label, Weight>, StateId>;
  
    Element Compact(StateId s, const Arc &arc) const {
      return std::make_pair(std::make_pair(arc.ilabel, arc.weight),
                            arc.nextstate);
    }
  
    Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
      return Arc(p.first.first, p.first.first, p.first.second, p.second);
    }
  
    constexpr ssize_t Size() const { return -1; }
  
    constexpr uint64 Properties() const { return kAcceptor; }
  
    bool Compatible(const Fst<Arc> &fst) const {
      const auto props = Properties();
      return fst.Properties(props, true) == props;
    }
  
    static const string &Type() {
      static const string *const type = new string("acceptor");
      return *type;
    }
  
    bool Write(std::ostream &strm) const { return true; }
  
    static AcceptorCompactor *Read(std::istream &strm) {
      return new AcceptorCompactor;
    }
  };
  
  // ArcCompactor for unweighted FSTs.
  template <class A>
  class UnweightedCompactor {
   public:
    using Arc = A;
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    using Element = std::pair<std::pair<Label, Label>, StateId>;
  
    Element Compact(StateId s, const Arc &arc) const {
      return std::make_pair(std::make_pair(arc.ilabel, arc.olabel),
                            arc.nextstate);
    }
  
    Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
      return Arc(p.first.first, p.first.second, Weight::One(), p.second);
    }
  
    constexpr ssize_t Size() const { return -1; }
  
    constexpr uint64 Properties() const { return kUnweighted; }
  
    bool Compatible(const Fst<Arc> &fst) const {
      const auto props = Properties();
      return fst.Properties(props, true) == props;
    }
  
    static const string &Type() {
      static const string *const type = new string("unweighted");
      return *type;
    }
  
    bool Write(std::ostream &strm) const { return true; }
  
    static UnweightedCompactor *Read(std::istream &strm) {
      return new UnweightedCompactor;
    }
  };
  
  template <class Arc, class Unsigned /* = uint32 */>
  using CompactStringFst = CompactFst<Arc, StringCompactor<Arc>, Unsigned>;
  
  template <class Arc, class Unsigned /* = uint32 */>
  using CompactWeightedStringFst =
      CompactFst<Arc, WeightedStringCompactor<Arc>, Unsigned>;
  
  template <class Arc, class Unsigned /* = uint32 */>
  using CompactAcceptorFst = CompactFst<Arc, AcceptorCompactor<Arc>, Unsigned>;
  
  template <class Arc, class Unsigned /* = uint32 */>
  using CompactUnweightedFst =
      CompactFst<Arc, UnweightedCompactor<Arc>, Unsigned>;
  
  template <class Arc, class Unsigned /* = uint32 */>
  using CompactUnweightedAcceptorFst =
      CompactFst<Arc, UnweightedAcceptorCompactor<Arc>, Unsigned>;
  
  using StdCompactStringFst = CompactStringFst<StdArc, uint32>;
  
  using StdCompactWeightedStringFst = CompactWeightedStringFst<StdArc, uint32>;
  
  using StdCompactAcceptorFst = CompactAcceptorFst<StdArc, uint32>;
  
  using StdCompactUnweightedFst = CompactUnweightedFst<StdArc, uint32>;
  
  using StdCompactUnweightedAcceptorFst =
      CompactUnweightedAcceptorFst<StdArc, uint32>;
  
  }  // namespace fst
  
  #endif  // FST_COMPACT_FST_H_