Blame view
tools/openfst-1.6.7/include/fst/connect.h
9.34 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Classes and functions to remove unsuccessful paths from an FST. #ifndef FST_CONNECT_H_ #define FST_CONNECT_H_ #include <vector> #include <fst/dfs-visit.h> #include <fst/mutable-fst.h> #include <fst/union-find.h> namespace fst { // Finds and returns connected components. Use with Visit(). template <class Arc> class CcVisitor { public: using Weight = typename Arc::Weight; using StateId = typename Arc::StateId; // cc[i]: connected component number for state i. explicit CcVisitor(std::vector<StateId> *cc) : comps_(new UnionFind<StateId>(0, kNoStateId)), cc_(cc), nstates_(0) {} // comps: connected components equiv classes. explicit CcVisitor(UnionFind<StateId> *comps) : comps_(comps), cc_(nullptr), nstates_(0) {} ~CcVisitor() { if (cc_) delete comps_; } void InitVisit(const Fst<Arc> &fst) {} bool InitState(StateId s, StateId root) { ++nstates_; if (comps_->FindSet(s) == kNoStateId) comps_->MakeSet(s); return true; } bool WhiteArc(StateId s, const Arc &arc) { comps_->MakeSet(arc.nextstate); comps_->Union(s, arc.nextstate); return true; } bool GreyArc(StateId s, const Arc &arc) { comps_->Union(s, arc.nextstate); return true; } bool BlackArc(StateId s, const Arc &arc) { comps_->Union(s, arc.nextstate); return true; } void FinishState(StateId s) {} void FinishVisit() { if (cc_) GetCcVector(cc_); } // Returns number of components. // cc[i]: connected component number for state i. int GetCcVector(std::vector<StateId> *cc) { cc->clear(); cc->resize(nstates_, kNoStateId); StateId ncomp = 0; for (StateId s = 0; s < nstates_; ++s) { const auto rep = comps_->FindSet(s); auto &comp = (*cc)[rep]; if (comp == kNoStateId) { comp = ncomp; ++ncomp; } (*cc)[s] = comp; } return ncomp; } private: UnionFind<StateId> *comps_; // Components. std::vector<StateId> *cc_; // State's cc number. StateId nstates_; // State count. }; // Finds and returns strongly-connected components, accessible and // coaccessible states and related properties. Uses Tarjan's single // DFS SCC algorithm (see Aho, et al, "Design and Analysis of Computer // Algorithms", 189pp). Use with DfsVisit(); template <class Arc> class SccVisitor { public: using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // scc[i]: strongly-connected component number for state i. // SCC numbers will be in topological order for acyclic input. // access[i]: accessibility of state i. // coaccess[i]: coaccessibility of state i. // Any of above can be NULL. // props: related property bits (cyclicity, initial cyclicity, // accessibility, coaccessibility) set/cleared (o.w. unchanged). SccVisitor(std::vector<StateId> *scc, std::vector<bool> *access, std::vector<bool> *coaccess, uint64 *props) : scc_(scc), access_(access), coaccess_(coaccess), props_(props) {} explicit SccVisitor(uint64 *props) : scc_(nullptr), access_(nullptr), coaccess_(nullptr), props_(props) {} void InitVisit(const Fst<Arc> &fst); bool InitState(StateId s, StateId root); bool TreeArc(StateId s, const Arc &arc) { return true; } bool BackArc(StateId s, const Arc &arc) { const auto t = arc.nextstate; if ((*dfnumber_)[t] < (*lowlink_)[s]) (*lowlink_)[s] = (*dfnumber_)[t]; if ((*coaccess_)[t]) (*coaccess_)[s] = true; *props_ |= kCyclic; *props_ &= ~kAcyclic; if (t == start_) { *props_ |= kInitialCyclic; *props_ &= ~kInitialAcyclic; } return true; } bool ForwardOrCrossArc(StateId s, const Arc &arc) { const auto t = arc.nextstate; if ((*dfnumber_)[t] < (*dfnumber_)[s] /* cross edge */ && (*onstack_)[t] && (*dfnumber_)[t] < (*lowlink_)[s]) { (*lowlink_)[s] = (*dfnumber_)[t]; } if ((*coaccess_)[t]) (*coaccess_)[s] = true; return true; } // Last argument always ignored, but required by the interface. void FinishState(StateId state, StateId p, const Arc *); void FinishVisit() { // Numbers SCCs in topological order when acyclic. if (scc_) { for (StateId s = 0; s < scc_->size(); ++s) { (*scc_)[s] = nscc_ - 1 - (*scc_)[s]; } } if (coaccess_internal_) delete coaccess_; dfnumber_.reset(); lowlink_.reset(); onstack_.reset(); scc_stack_.reset(); } private: std::vector<StateId> *scc_; // State's scc number. std::vector<bool> *access_; // State's accessibility. std::vector<bool> *coaccess_; // State's coaccessibility. uint64 *props_; const Fst<Arc> *fst_; StateId start_; StateId nstates_; // State count. StateId nscc_; // SCC count. bool coaccess_internal_; std::unique_ptr<std::vector<StateId>> dfnumber_; // State discovery times. std::unique_ptr<std::vector<StateId>> lowlink_; // lowlink[state] == dfnumber[state] => SCC root std::unique_ptr<std::vector<bool>> onstack_; // Is a state on the SCC stack? std::unique_ptr<std::vector<StateId>> scc_stack_; // SCC stack, with random access. }; template <class Arc> inline void SccVisitor<Arc>::InitVisit(const Fst<Arc> &fst) { if (scc_) scc_->clear(); if (access_) access_->clear(); if (coaccess_) { coaccess_->clear(); coaccess_internal_ = false; } else { coaccess_ = new std::vector<bool>; coaccess_internal_ = true; } *props_ |= kAcyclic | kInitialAcyclic | kAccessible | kCoAccessible; *props_ &= ~(kCyclic | kInitialCyclic | kNotAccessible | kNotCoAccessible); fst_ = &fst; start_ = fst.Start(); nstates_ = 0; nscc_ = 0; dfnumber_.reset(new std::vector<StateId>()); lowlink_.reset(new std::vector<StateId>()); onstack_.reset(new std::vector<bool>()); scc_stack_.reset(new std::vector<StateId>()); } template <class Arc> inline bool SccVisitor<Arc>::InitState(StateId s, StateId root) { scc_stack_->push_back(s); while (dfnumber_->size() <= s) { if (scc_) scc_->push_back(-1); if (access_) access_->push_back(false); coaccess_->push_back(false); dfnumber_->push_back(-1); lowlink_->push_back(-1); onstack_->push_back(false); } (*dfnumber_)[s] = nstates_; (*lowlink_)[s] = nstates_; (*onstack_)[s] = true; if (root == start_) { if (access_) (*access_)[s] = true; } else { if (access_) (*access_)[s] = false; *props_ |= kNotAccessible; *props_ &= ~kAccessible; } ++nstates_; return true; } template <class Arc> inline void SccVisitor<Arc>::FinishState(StateId s, StateId p, const Arc *) { if (fst_->Final(s) != Weight::Zero()) (*coaccess_)[s] = true; if ((*dfnumber_)[s] == (*lowlink_)[s]) { // Root of new SCC. bool scc_coaccess = false; auto i = scc_stack_->size(); StateId t; do { t = (*scc_stack_)[--i]; if ((*coaccess_)[t]) scc_coaccess = true; } while (s != t); do { t = scc_stack_->back(); if (scc_) (*scc_)[t] = nscc_; if (scc_coaccess) (*coaccess_)[t] = true; (*onstack_)[t] = false; scc_stack_->pop_back(); } while (s != t); if (!scc_coaccess) { *props_ |= kNotCoAccessible; *props_ &= ~kCoAccessible; } ++nscc_; } if (p != kNoStateId) { if ((*coaccess_)[s]) (*coaccess_)[p] = true; if ((*lowlink_)[s] < (*lowlink_)[p]) (*lowlink_)[p] = (*lowlink_)[s]; } } // Trims an FST, removing states and arcs that are not on successful paths. // This version modifies its input. // // Complexity: // // Time: O(V + E) // Space: O(V + E) // // where V = # of states and E = # of arcs. template <class Arc> void Connect(MutableFst<Arc> *fst) { using StateId = typename Arc::StateId; std::vector<bool> access; std::vector<bool> coaccess; uint64 props = 0; SccVisitor<Arc> scc_visitor(nullptr, &access, &coaccess, &props); DfsVisit(*fst, &scc_visitor); std::vector<StateId> dstates; for (StateId s = 0; s < access.size(); ++s) { if (!access[s] || !coaccess[s]) dstates.push_back(s); } fst->DeleteStates(dstates); fst->SetProperties(kAccessible | kCoAccessible, kAccessible | kCoAccessible); } // Returns an acyclic FST where each SCC in the input FST has been condensed to // a single state with transitions between SCCs retained and within SCCs // dropped. Also populates 'scc' with a mapping from input to output states. template <class Arc> void Condense(const Fst<Arc> &ifst, MutableFst<Arc> *ofst, std::vector<typename Arc::StateId> *scc) { using StateId = typename Arc::StateId; ofst->DeleteStates(); uint64 props = 0; SccVisitor<Arc> scc_visitor(scc, nullptr, nullptr, &props); DfsVisit(ifst, &scc_visitor); for (StateId s = 0; s < scc->size(); ++s) { const auto c = (*scc)[s]; while (c >= ofst->NumStates()) ofst->AddState(); if (s == ifst.Start()) ofst->SetStart(c); const auto weight = ifst.Final(s); if (weight != Arc::Weight::Zero()) ofst->SetFinal(c, Plus(ofst->Final(c), weight)); for (ArcIterator<Fst<Arc>> aiter(ifst, s); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); const auto nextc = (*scc)[arc.nextstate]; if (nextc != c) { while (nextc >= ofst->NumStates()) ofst->AddState(); arc.nextstate = nextc; ofst->AddArc(c, arc); } } } ofst->SetProperties(kAcyclic | kInitialAcyclic, kAcyclic | kInitialAcyclic); } } // namespace fst #endif // FST_CONNECT_H_ |