Blame view

tools/openfst-1.6.7/include/fst/float-weight.h 24.2 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Float weight set and associated semiring operation definitions.
  
  #ifndef FST_FLOAT_WEIGHT_H_
  #define FST_FLOAT_WEIGHT_H_
  
  #include <climits>
  #include <cmath>
  #include <cstdlib>
  #include <cstring>
  
  #include <algorithm>
  #include <limits>
  #include <sstream>
  #include <string>
  
  #include <fst/util.h>
  #include <fst/weight.h>
  
  
  namespace fst {
  
  // Numeric limits class.
  template <class T>
  class FloatLimits {
   public:
    static constexpr T PosInfinity() {
      return std::numeric_limits<T>::infinity();
    }
  
    static constexpr T NegInfinity() { return -PosInfinity(); }
  
    static constexpr T NumberBad() { return std::numeric_limits<T>::quiet_NaN(); }
  };
  
  // Weight class to be templated on floating-points types.
  template <class T = float>
  class FloatWeightTpl {
   public:
    using ValueType = T;
  
    FloatWeightTpl() {}
  
    FloatWeightTpl(T f) : value_(f) {}
  
    FloatWeightTpl(const FloatWeightTpl<T> &weight) : value_(weight.value_) {}
  
    FloatWeightTpl<T> &operator=(const FloatWeightTpl<T> &weight) {
      value_ = weight.value_;
      return *this;
    }
  
    std::istream &Read(std::istream &strm) { return ReadType(strm, &value_); }
  
    std::ostream &Write(std::ostream &strm) const {
      return WriteType(strm, value_);
    }
  
    size_t Hash() const {
      size_t hash = 0;
      // Avoid using union, which would be undefined behavior.
      // Use memcpy, similar to bit_cast, but sizes may be different.
      // This should be optimized into a single move instruction by
      // any reasonable compiler.
      std::memcpy(&hash, &value_, std::min(sizeof(hash), sizeof(value_)));
      return hash;
    }
  
    const T &Value() const { return value_; }
  
   protected:
    void SetValue(const T &f) { value_ = f; }
  
    static constexpr const char *GetPrecisionString() {
      return sizeof(T) == 4
                 ? ""
                 : sizeof(T) == 1
                       ? "8"
                       : sizeof(T) == 2 ? "16"
                                        : sizeof(T) == 8 ? "64" : "unknown";
    }
  
   private:
    T value_;
  };
  
  // Single-precision float weight.
  using FloatWeight = FloatWeightTpl<float>;
  
  template <class T>
  inline bool operator==(const FloatWeightTpl<T> &w1,
                         const FloatWeightTpl<T> &w2) {
    // Volatile qualifier thwarts over-aggressive compiler optimizations that
    // lead to problems esp. with NaturalLess().
    volatile T v1 = w1.Value();
    volatile T v2 = w2.Value();
    return v1 == v2;
  }
  
  // These seemingly unnecessary overloads are actually needed to make
  // comparisons like FloatWeightTpl<float> == float compile.  If only the
  // templated version exists, the FloatWeightTpl<float>(float) conversion
  // won't be found.
  inline bool operator==(const FloatWeightTpl<float> &w1,
                         const FloatWeightTpl<float> &w2) {
    return operator==<float>(w1, w2);
  }
  
  inline bool operator==(const FloatWeightTpl<double> &w1,
                         const FloatWeightTpl<double> &w2) {
    return operator==<double>(w1, w2);
  }
  
  template <class T>
  inline bool operator!=(const FloatWeightTpl<T> &w1,
                         const FloatWeightTpl<T> &w2) {
    return !(w1 == w2);
  }
  
  inline bool operator!=(const FloatWeightTpl<float> &w1,
                         const FloatWeightTpl<float> &w2) {
    return operator!=<float>(w1, w2);
  }
  
  inline bool operator!=(const FloatWeightTpl<double> &w1,
                         const FloatWeightTpl<double> &w2) {
    return operator!=<double>(w1, w2);
  }
  
  template <class T>
  inline bool ApproxEqual(const FloatWeightTpl<T> &w1,
                          const FloatWeightTpl<T> &w2, float delta = kDelta) {
    return w1.Value() <= w2.Value() + delta && w2.Value() <= w1.Value() + delta;
  }
  
  template <class T>
  inline std::ostream &operator<<(std::ostream &strm,
                                  const FloatWeightTpl<T> &w) {
    if (w.Value() == FloatLimits<T>::PosInfinity()) {
      return strm << "Infinity";
    } else if (w.Value() == FloatLimits<T>::NegInfinity()) {
      return strm << "-Infinity";
    } else if (w.Value() != w.Value()) {  // Fails for IEEE NaN.
      return strm << "BadNumber";
    } else {
      return strm << w.Value();
    }
  }
  
  template <class T>
  inline std::istream &operator>>(std::istream &strm, FloatWeightTpl<T> &w) {
    string s;
    strm >> s;
    if (s == "Infinity") {
      w = FloatWeightTpl<T>(FloatLimits<T>::PosInfinity());
    } else if (s == "-Infinity") {
      w = FloatWeightTpl<T>(FloatLimits<T>::NegInfinity());
    } else {
      char *p;
      T f = strtod(s.c_str(), &p);
      if (p < s.c_str() + s.size()) {
        strm.clear(std::ios::badbit);
      } else {
        w = FloatWeightTpl<T>(f);
      }
    }
    return strm;
  }
  
  // Tropical semiring: (min, +, inf, 0).
  template <class T>
  class TropicalWeightTpl : public FloatWeightTpl<T> {
   public:
    using typename FloatWeightTpl<T>::ValueType;
    using FloatWeightTpl<T>::Value;
    using ReverseWeight = TropicalWeightTpl<T>;
    using Limits = FloatLimits<T>;
  
    constexpr TropicalWeightTpl() : FloatWeightTpl<T>() {}
  
    constexpr TropicalWeightTpl(T f) : FloatWeightTpl<T>(f) {}
  
    constexpr TropicalWeightTpl(const TropicalWeightTpl<T> &weight)
        : FloatWeightTpl<T>(weight) {}
  
    static const TropicalWeightTpl<T> &Zero() {
      static const TropicalWeightTpl zero(Limits::PosInfinity());
      return zero;
    }
  
    static const TropicalWeightTpl<T> &One() {
      static const TropicalWeightTpl one(0.0F);
      return one;
    }
  
    static const TropicalWeightTpl<T> &NoWeight() {
      static const TropicalWeightTpl no_weight(Limits::NumberBad());
      return no_weight;
    }
  
    static const string &Type() {
      static const string *const type =
          new string(string("tropical") +
                     FloatWeightTpl<T>::GetPrecisionString());
      return *type;
    }
  
    bool Member() const {
      // First part fails for IEEE NaN.
      return Value() == Value() && Value() != Limits::NegInfinity();
    }
  
    TropicalWeightTpl<T> Quantize(float delta = kDelta) const {
      if (!Member() || Value() == Limits::PosInfinity()) {
        return *this;
      } else {
        return TropicalWeightTpl<T>(floor(Value() / delta + 0.5F) * delta);
      }
    }
  
    TropicalWeightTpl<T> Reverse() const { return *this; }
  
    static constexpr uint64 Properties() {
      return kLeftSemiring | kRightSemiring | kCommutative | kPath | kIdempotent;
    }
  };
  
  // Single precision tropical weight.
  using TropicalWeight = TropicalWeightTpl<float>;
  
  template <class T>
  inline TropicalWeightTpl<T> Plus(const TropicalWeightTpl<T> &w1,
                                   const TropicalWeightTpl<T> &w2) {
    if (!w1.Member() || !w2.Member()) return TropicalWeightTpl<T>::NoWeight();
    return w1.Value() < w2.Value() ? w1 : w2;
  }
  
  // See comment at operator==(FloatWeightTpl<float>, FloatWeightTpl<float>)
  // for why these overloads are present.
  inline TropicalWeightTpl<float> Plus(const TropicalWeightTpl<float> &w1,
                                       const TropicalWeightTpl<float> &w2) {
    return Plus<float>(w1, w2);
  }
  
  inline TropicalWeightTpl<double> Plus(const TropicalWeightTpl<double> &w1,
                                        const TropicalWeightTpl<double> &w2) {
    return Plus<double>(w1, w2);
  }
  
  template <class T>
  inline TropicalWeightTpl<T> Times(const TropicalWeightTpl<T> &w1,
                                    const TropicalWeightTpl<T> &w2) {
    using Limits = FloatLimits<T>;
    if (!w1.Member() || !w2.Member()) return TropicalWeightTpl<T>::NoWeight();
    const T f1 = w1.Value();
    const T f2 = w2.Value();
    if (f1 == Limits::PosInfinity()) {
      return w1;
    } else if (f2 == Limits::PosInfinity()) {
      return w2;
    } else {
      return TropicalWeightTpl<T>(f1 + f2);
    }
  }
  
  inline TropicalWeightTpl<float> Times(const TropicalWeightTpl<float> &w1,
                                        const TropicalWeightTpl<float> &w2) {
    return Times<float>(w1, w2);
  }
  
  inline TropicalWeightTpl<double> Times(const TropicalWeightTpl<double> &w1,
                                         const TropicalWeightTpl<double> &w2) {
    return Times<double>(w1, w2);
  }
  
  template <class T>
  inline TropicalWeightTpl<T> Divide(const TropicalWeightTpl<T> &w1,
                                     const TropicalWeightTpl<T> &w2,
                                     DivideType typ = DIVIDE_ANY) {
    using Limits = FloatLimits<T>;
    if (!w1.Member() || !w2.Member()) return TropicalWeightTpl<T>::NoWeight();
    const T f1 = w1.Value();
    const T f2 = w2.Value();
    if (f2 == Limits::PosInfinity()) {
      return Limits::NumberBad();
    } else if (f1 == Limits::PosInfinity()) {
      return Limits::PosInfinity();
    } else {
      return TropicalWeightTpl<T>(f1 - f2);
    }
  }
  
  inline TropicalWeightTpl<float> Divide(const TropicalWeightTpl<float> &w1,
                                         const TropicalWeightTpl<float> &w2,
                                         DivideType typ = DIVIDE_ANY) {
    return Divide<float>(w1, w2, typ);
  }
  
  inline TropicalWeightTpl<double> Divide(const TropicalWeightTpl<double> &w1,
                                          const TropicalWeightTpl<double> &w2,
                                          DivideType typ = DIVIDE_ANY) {
    return Divide<double>(w1, w2, typ);
  }
  
  template <class T, class V>
  inline TropicalWeightTpl<T> Power(const TropicalWeightTpl<T> &weight, V n) {
    if (n == 0) {
      return TropicalWeightTpl<T>::One();
    } else if (weight == TropicalWeightTpl<T>::Zero()) {
      return TropicalWeightTpl<T>::Zero();
    }
    return TropicalWeightTpl<T>(weight.Value() * n);
  }
  
  // Specializes the library-wide template to use the above implementation; rules
  // of function template instantiation require this be a full instantiation.
  
  template <>
  inline TropicalWeightTpl<float> Power<TropicalWeightTpl<float>>(
      const TropicalWeightTpl<float> &weight, size_t n) {
    return Power<float, size_t>(weight, n);
  }
  
  template <>
  inline TropicalWeightTpl<double> Power<TropicalWeightTpl<double>>(
      const TropicalWeightTpl<double> &weight, size_t n) {
    return Power<double, size_t>(weight, n);
  }
  
  
  // Log semiring: (log(e^-x + e^-y), +, inf, 0).
  template <class T>
  class LogWeightTpl : public FloatWeightTpl<T> {
   public:
    using typename FloatWeightTpl<T>::ValueType;
    using FloatWeightTpl<T>::Value;
    using ReverseWeight = LogWeightTpl;
    using Limits = FloatLimits<T>;
  
    constexpr LogWeightTpl() : FloatWeightTpl<T>() {}
  
    constexpr LogWeightTpl(T f) : FloatWeightTpl<T>(f) {}
  
    constexpr LogWeightTpl(const LogWeightTpl<T> &weight)
        : FloatWeightTpl<T>(weight) {}
  
    static const LogWeightTpl &Zero() {
      static const LogWeightTpl zero(Limits::PosInfinity());
      return zero;
    }
  
    static const LogWeightTpl &One() {
      static const LogWeightTpl one(0.0F);
      return one;
    }
  
    static const LogWeightTpl &NoWeight() {
      static const LogWeightTpl no_weight(Limits::NumberBad());
      return no_weight;
    }
  
    static const string &Type() {
      static const string *const type =
          new string(string("log") + FloatWeightTpl<T>::GetPrecisionString());
      return *type;
    }
  
    bool Member() const {
      // First part fails for IEEE NaN.
      return Value() == Value() && Value() != Limits::NegInfinity();
    }
  
    LogWeightTpl<T> Quantize(float delta = kDelta) const {
      if (!Member() || Value() == Limits::PosInfinity()) {
        return *this;
      } else {
        return LogWeightTpl<T>(floor(Value() / delta + 0.5F) * delta);
      }
    }
  
    LogWeightTpl<T> Reverse() const { return *this; }
  
    static constexpr uint64 Properties() {
      return kLeftSemiring | kRightSemiring | kCommutative;
    }
  };
  
  // Single-precision log weight.
  using LogWeight = LogWeightTpl<float>;
  
  // Double-precision log weight.
  using Log64Weight = LogWeightTpl<double>;
  
  namespace internal {
  
  // -log(e^-x + e^-y) = x - LogPosExp(y - x), assuming x >= 0.0.
  inline double LogPosExp(double x) {
    DCHECK(!(x < 0));  // NB: NaN values are allowed.
    return log1p(exp(-x));
  }
  
  // -log(e^-x - e^-y) = x - LogNegExp(y - x), assuming x > 0.0.
  inline double LogNegExp(double x) {
    DCHECK_GT(x, 0);
    return log1p(-exp(-x));
  }
  
  // a +_log b = -log(e^-a + e^-b) = KahanLogSum(a, b, ...).
  // Kahan compensated summation provides an error bound that is
  // independent of the number of addends. Assumes b >= a;
  // c is the compensation.
  inline double KahanLogSum(double a, double b, double *c) {
    DCHECK_GE(b, a);
    double y = -LogPosExp(b - a) - *c;
    double t = a + y;
    *c = (t - a) - y;
    return t;
  }
  
  // a -_log b = -log(e^-a - e^-b) = KahanLogDiff(a, b, ...).
  // Kahan compensated summation provides an error bound that is
  // independent of the number of addends. Assumes b > a;
  // c is the compensation.
  inline double KahanLogDiff(double a, double b, double *c) {
    DCHECK_GT(b, a);
    double y = -LogNegExp(b - a) - *c;
    double t = a + y;
    *c = (t - a) - y;
    return t;
  }
  
  }  // namespace internal
  
  template <class T>
  inline LogWeightTpl<T> Plus(const LogWeightTpl<T> &w1,
                              const LogWeightTpl<T> &w2) {
    using Limits = FloatLimits<T>;
    const T f1 = w1.Value();
    const T f2 = w2.Value();
    if (f1 == Limits::PosInfinity()) {
      return w2;
    } else if (f2 == Limits::PosInfinity()) {
      return w1;
    } else if (f1 > f2) {
      return LogWeightTpl<T>(f2 - internal::LogPosExp(f1 - f2));
    } else {
      return LogWeightTpl<T>(f1 - internal::LogPosExp(f2 - f1));
    }
  }
  
  inline LogWeightTpl<float> Plus(const LogWeightTpl<float> &w1,
                                  const LogWeightTpl<float> &w2) {
    return Plus<float>(w1, w2);
  }
  
  inline LogWeightTpl<double> Plus(const LogWeightTpl<double> &w1,
                                   const LogWeightTpl<double> &w2) {
    return Plus<double>(w1, w2);
  }
  
  template <class T>
  inline LogWeightTpl<T> Times(const LogWeightTpl<T> &w1,
                               const LogWeightTpl<T> &w2) {
    using Limits = FloatLimits<T>;
    if (!w1.Member() || !w2.Member()) return LogWeightTpl<T>::NoWeight();
    const T f1 = w1.Value();
    const T f2 = w2.Value();
    if (f1 == Limits::PosInfinity()) {
      return w1;
    } else if (f2 == Limits::PosInfinity()) {
      return w2;
    } else {
      return LogWeightTpl<T>(f1 + f2);
    }
  }
  
  inline LogWeightTpl<float> Times(const LogWeightTpl<float> &w1,
                                   const LogWeightTpl<float> &w2) {
    return Times<float>(w1, w2);
  }
  
  inline LogWeightTpl<double> Times(const LogWeightTpl<double> &w1,
                                    const LogWeightTpl<double> &w2) {
    return Times<double>(w1, w2);
  }
  
  template <class T>
  inline LogWeightTpl<T> Divide(const LogWeightTpl<T> &w1,
                                const LogWeightTpl<T> &w2,
                                DivideType typ = DIVIDE_ANY) {
    using Limits = FloatLimits<T>;
    if (!w1.Member() || !w2.Member()) return LogWeightTpl<T>::NoWeight();
    const T f1 = w1.Value();
    const T f2 = w2.Value();
    if (f2 == Limits::PosInfinity()) {
      return Limits::NumberBad();
    } else if (f1 == Limits::PosInfinity()) {
      return Limits::PosInfinity();
    } else {
      return LogWeightTpl<T>(f1 - f2);
    }
  }
  
  inline LogWeightTpl<float> Divide(const LogWeightTpl<float> &w1,
                                    const LogWeightTpl<float> &w2,
                                    DivideType typ = DIVIDE_ANY) {
    return Divide<float>(w1, w2, typ);
  }
  
  inline LogWeightTpl<double> Divide(const LogWeightTpl<double> &w1,
                                     const LogWeightTpl<double> &w2,
                                     DivideType typ = DIVIDE_ANY) {
    return Divide<double>(w1, w2, typ);
  }
  
  template <class T, class V>
  inline LogWeightTpl<T> Power(const LogWeightTpl<T> &weight, V n) {
    if (n == 0) {
      return LogWeightTpl<T>::One();
    } else if (weight == LogWeightTpl<T>::Zero()) {
      return LogWeightTpl<T>::Zero();
    }
    return LogWeightTpl<T>(weight.Value() * n);
  }
  
  // Specializes the library-wide template to use the above implementation; rules
  // of function template instantiation require this be a full instantiation.
  
  template <>
  inline LogWeightTpl<float> Power<LogWeightTpl<float>>(
      const LogWeightTpl<float> &weight, size_t n) {
    return Power<float, size_t>(weight, n);
  }
  
  template <>
  inline LogWeightTpl<double> Power<LogWeightTpl<double>>(
      const LogWeightTpl<double> &weight, size_t n) {
    return Power<double, size_t>(weight, n);
  }
  
  // Specialization using the Kahan compensated summation.
  template <class T>
  class Adder<LogWeightTpl<T>> {
   public:
    using Weight = LogWeightTpl<T>;
  
    explicit Adder(Weight w = Weight::Zero())
        : sum_(w.Value()),
          c_(0.0) { }
  
    Weight Add(const Weight &w) {
      using Limits = FloatLimits<T>;
      const T f = w.Value();
      if (f == Limits::PosInfinity()) {
        return Sum();
      } else if (sum_ == Limits::PosInfinity()) {
        sum_ = f;
        c_ = 0.0;
      } else if (f > sum_) {
        sum_ = internal::KahanLogSum(sum_, f, &c_);
      } else {
        sum_ = internal::KahanLogSum(f, sum_, &c_);
      }
      return Sum();
    }
  
    Weight Sum() { return Weight(sum_); }
  
    void Reset(Weight w = Weight::Zero()) {
      sum_ = w.Value();
      c_ = 0.0;
    }
  
   private:
    double sum_;
    double c_;   // Kahan compensation.
  };
  
  // MinMax semiring: (min, max, inf, -inf).
  template <class T>
  class MinMaxWeightTpl : public FloatWeightTpl<T> {
   public:
    using typename FloatWeightTpl<T>::ValueType;
    using FloatWeightTpl<T>::Value;
    using ReverseWeight = MinMaxWeightTpl<T>;
    using Limits = FloatLimits<T>;
  
    MinMaxWeightTpl() : FloatWeightTpl<T>() {}
  
    MinMaxWeightTpl(T f) : FloatWeightTpl<T>(f) {}
  
    MinMaxWeightTpl(const MinMaxWeightTpl<T> &weight)
        : FloatWeightTpl<T>(weight) {}
  
    static const MinMaxWeightTpl &Zero() {
      static const MinMaxWeightTpl zero(Limits::PosInfinity());
      return zero;
    }
  
    static const MinMaxWeightTpl &One() {
      static const MinMaxWeightTpl one(Limits::NegInfinity());
      return one;
    }
  
    static const MinMaxWeightTpl &NoWeight() {
      static const MinMaxWeightTpl no_weight(Limits::NumberBad());
      return no_weight;
    }
  
    static const string &Type() {
      static const string *const type =
          new string(string("minmax") + FloatWeightTpl<T>::GetPrecisionString());
      return *type;
    }
  
    // Fails for IEEE NaN.
    bool Member() const { return Value() == Value(); }
  
    MinMaxWeightTpl<T> Quantize(float delta = kDelta) const {
      // If one of infinities, or a NaN.
      if (!Member() ||
          Value() == Limits::NegInfinity() || Value() == Limits::PosInfinity()) {
        return *this;
      } else {
        return MinMaxWeightTpl<T>(floor(Value() / delta + 0.5F) * delta);
      }
    }
  
    MinMaxWeightTpl<T> Reverse() const { return *this; }
  
    static constexpr uint64 Properties() {
      return kLeftSemiring | kRightSemiring | kCommutative | kIdempotent | kPath;
    }
  };
  
  // Single-precision min-max weight.
  using MinMaxWeight = MinMaxWeightTpl<float>;
  
  // Min.
  template <class T>
  inline MinMaxWeightTpl<T> Plus(const MinMaxWeightTpl<T> &w1,
                                 const MinMaxWeightTpl<T> &w2) {
    if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl<T>::NoWeight();
    return w1.Value() < w2.Value() ? w1 : w2;
  }
  
  inline MinMaxWeightTpl<float> Plus(const MinMaxWeightTpl<float> &w1,
                                     const MinMaxWeightTpl<float> &w2) {
    return Plus<float>(w1, w2);
  }
  
  inline MinMaxWeightTpl<double> Plus(const MinMaxWeightTpl<double> &w1,
                                      const MinMaxWeightTpl<double> &w2) {
    return Plus<double>(w1, w2);
  }
  
  // Max.
  template <class T>
  inline MinMaxWeightTpl<T> Times(const MinMaxWeightTpl<T> &w1,
                                  const MinMaxWeightTpl<T> &w2) {
    if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl<T>::NoWeight();
    return w1.Value() >= w2.Value() ? w1 : w2;
  }
  
  inline MinMaxWeightTpl<float> Times(const MinMaxWeightTpl<float> &w1,
                                      const MinMaxWeightTpl<float> &w2) {
    return Times<float>(w1, w2);
  }
  
  inline MinMaxWeightTpl<double> Times(const MinMaxWeightTpl<double> &w1,
                                       const MinMaxWeightTpl<double> &w2) {
    return Times<double>(w1, w2);
  }
  
  // Defined only for special cases.
  template <class T>
  inline MinMaxWeightTpl<T> Divide(const MinMaxWeightTpl<T> &w1,
                                   const MinMaxWeightTpl<T> &w2,
                                   DivideType typ = DIVIDE_ANY) {
    if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl<T>::NoWeight();
    // min(w1, x) = w2, w1 >= w2 => min(w1, x) = w2, x = w2.
    return w1.Value() >= w2.Value() ? w1 : FloatLimits<T>::NumberBad();
  }
  
  inline MinMaxWeightTpl<float> Divide(const MinMaxWeightTpl<float> &w1,
                                       const MinMaxWeightTpl<float> &w2,
                                       DivideType typ = DIVIDE_ANY) {
    return Divide<float>(w1, w2, typ);
  }
  
  inline MinMaxWeightTpl<double> Divide(const MinMaxWeightTpl<double> &w1,
                                        const MinMaxWeightTpl<double> &w2,
                                        DivideType typ = DIVIDE_ANY) {
    return Divide<double>(w1, w2, typ);
  }
  
  // Converts to tropical.
  template <>
  struct WeightConvert<LogWeight, TropicalWeight> {
    TropicalWeight operator()(const LogWeight &w) const { return w.Value(); }
  };
  
  template <>
  struct WeightConvert<Log64Weight, TropicalWeight> {
    TropicalWeight operator()(const Log64Weight &w) const { return w.Value(); }
  };
  
  // Converts to log.
  template <>
  struct WeightConvert<TropicalWeight, LogWeight> {
    LogWeight operator()(const TropicalWeight &w) const { return w.Value(); }
  };
  
  template <>
  struct WeightConvert<Log64Weight, LogWeight> {
    LogWeight operator()(const Log64Weight &w) const { return w.Value(); }
  };
  
  // Converts to log64.
  template <>
  struct WeightConvert<TropicalWeight, Log64Weight> {
    Log64Weight operator()(const TropicalWeight &w) const { return w.Value(); }
  };
  
  template <>
  struct WeightConvert<LogWeight, Log64Weight> {
    Log64Weight operator()(const LogWeight &w) const { return w.Value(); }
  };
  
  // This function object returns random integers chosen from [0,
  // num_random_weights). The boolean 'allow_zero' determines whether Zero() and
  // zero divisors should be returned in the random weight generation. This is
  // intended primary for testing.
  template <class Weight>
  class FloatWeightGenerate {
   public:
    explicit FloatWeightGenerate(
        bool allow_zero = true,
        const size_t num_random_weights = kNumRandomWeights)
        : allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}
  
    Weight operator()() const {
      const int n = rand() % (num_random_weights_ + allow_zero_);  // NOLINT
      if (allow_zero_ && n == num_random_weights_) return Weight::Zero();
      return Weight(n);
    }
  
   private:
    // Permits Zero() and zero divisors.
    const bool allow_zero_;
    // Number of alternative random weights.
    const size_t num_random_weights_;
  };
  
  template <class T>
  class WeightGenerate<TropicalWeightTpl<T>>
      : public FloatWeightGenerate<TropicalWeightTpl<T>> {
   public:
    using Weight = TropicalWeightTpl<T>;
    using Generate = FloatWeightGenerate<Weight>;
  
    explicit WeightGenerate(bool allow_zero = true,
                            size_t num_random_weights = kNumRandomWeights)
        : Generate(allow_zero, num_random_weights) {}
  
    Weight operator()() const { return Weight(Generate::operator()()); }
  };
  
  template <class T>
  class WeightGenerate<LogWeightTpl<T>>
      : public FloatWeightGenerate<LogWeightTpl<T>> {
   public:
    using Weight = LogWeightTpl<T>;
    using Generate = FloatWeightGenerate<Weight>;
  
    explicit WeightGenerate(bool allow_zero = true,
                            size_t num_random_weights = kNumRandomWeights)
        : Generate(allow_zero, num_random_weights) {}
  
    Weight operator()() const { return Weight(Generate::operator()()); }
  };
  
  // This function object returns random integers chosen from [0,
  // num_random_weights). The boolean 'allow_zero' determines whether Zero() and
  // zero divisors should be returned in the random weight generation. This is
  // intended primary for testing.
  template <class T>
  class WeightGenerate<MinMaxWeightTpl<T>> {
   public:
    using Weight = MinMaxWeightTpl<T>;
  
    explicit WeightGenerate(bool allow_zero = true,
                            size_t num_random_weights = kNumRandomWeights)
        : allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}
  
    Weight operator()() const {
      const int n = (rand() %  // NOLINT
                     (2 * num_random_weights_ + allow_zero_)) -
                    num_random_weights_;
      if (allow_zero_ && n == num_random_weights_) {
        return Weight::Zero();
      } else if (n == -num_random_weights_) {
        return Weight::One();
      } else {
        return Weight(n);
      }
    }
  
   private:
    // Permits Zero() and zero divisors.
    const bool allow_zero_;
    // Number of alternative random weights.
    const size_t num_random_weights_;
  };
  
  }  // namespace fst
  
  #endif  // FST_FLOAT_WEIGHT_H_