Blame view
tools/openfst-1.6.7/include/fst/minimize.h
20.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes to minimize an FST. #ifndef FST_MINIMIZE_H_ #define FST_MINIMIZE_H_ #include <cmath> #include <algorithm> #include <map> #include <queue> #include <utility> #include <vector> #include <fst/log.h> #include <fst/arcsort.h> #include <fst/connect.h> #include <fst/dfs-visit.h> #include <fst/encode.h> #include <fst/factor-weight.h> #include <fst/fst.h> #include <fst/mutable-fst.h> #include <fst/partition.h> #include <fst/push.h> #include <fst/queue.h> #include <fst/reverse.h> #include <fst/shortest-distance.h> #include <fst/state-map.h> namespace fst { namespace internal { // Comparator for creating partition. template <class Arc> class StateComparator { public: using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; StateComparator(const Fst<Arc> &fst, const Partition<StateId> &partition) : fst_(fst), partition_(partition) {} // Compares state x with state y based on sort criteria. bool operator()(const StateId x, const StateId y) const { // Checks for final state equivalence. const auto xfinal = fst_.Final(x).Hash(); const auto yfinal = fst_.Final(y).Hash(); if (xfinal < yfinal) { return true; } else if (xfinal > yfinal) { return false; } // Checks for number of arcs. if (fst_.NumArcs(x) < fst_.NumArcs(y)) return true; if (fst_.NumArcs(x) > fst_.NumArcs(y)) return false; // If the number of arcs are equal, checks for arc match. for (ArcIterator<Fst<Arc>> aiter1(fst_, x), aiter2(fst_, y); !aiter1.Done() && !aiter2.Done(); aiter1.Next(), aiter2.Next()) { const auto &arc1 = aiter1.Value(); const auto &arc2 = aiter2.Value(); if (arc1.ilabel < arc2.ilabel) return true; if (arc1.ilabel > arc2.ilabel) return false; if (partition_.ClassId(arc1.nextstate) < partition_.ClassId(arc2.nextstate)) return true; if (partition_.ClassId(arc1.nextstate) > partition_.ClassId(arc2.nextstate)) return false; } return false; } private: const Fst<Arc> &fst_; const Partition<StateId> &partition_; }; // Computes equivalence classes for cyclic unweighted acceptors. For cyclic // minimization we use the classic Hopcroft minimization algorithm, which has // complexity O(E log V) where E is the number of arcs and V is the number of // states. // // For more information, see: // // Hopcroft, J. 1971. An n Log n algorithm for minimizing states in a finite // automaton. Ms, Stanford University. // // Note: the original presentation of the paper was for a finite automaton (== // deterministic, unweighted acceptor), but we also apply it to the // nondeterministic case, where it is also applicable as long as the semiring is // idempotent (if the semiring is not idempotent, there are some complexities // in keeping track of the weight when there are multiple arcs to states that // will be merged, and we don't deal with this). template <class Arc, class Queue> class CyclicMinimizer { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using ClassId = typename Arc::StateId; using Weight = typename Arc::Weight; using RevArc = ReverseArc<Arc>; explicit CyclicMinimizer(const ExpandedFst<Arc> &fst) { Initialize(fst); Compute(fst); } const Partition<StateId> &GetPartition() const { return P_; } private: // StateILabelHasher is a hashing object that computes a hash-function // of an FST state that depends only on the set of ilabels on arcs leaving // the state [note: it assumes that the arcs are ilabel-sorted]. // In order to work correctly for non-deterministic automata, multiple // instances of the same ilabel count the same as a single instance. class StateILabelHasher { public: explicit StateILabelHasher(const Fst<Arc> &fst) : fst_(fst) {} using Label = typename Arc::Label; using StateId = typename Arc::StateId; size_t operator()(const StateId s) { const size_t p1 = 7603; const size_t p2 = 433024223; size_t result = p2; size_t current_ilabel = kNoLabel; for (ArcIterator<Fst<Arc>> aiter(fst_, s); !aiter.Done(); aiter.Next()) { Label this_ilabel = aiter.Value().ilabel; if (this_ilabel != current_ilabel) { // Ignores repeats. result = p1 * result + this_ilabel; current_ilabel = this_ilabel; } } return result; } private: const Fst<Arc> &fst_; }; class ArcIterCompare { public: explicit ArcIterCompare(const Partition<StateId> &partition) : partition_(partition) {} ArcIterCompare(const ArcIterCompare &comp) : partition_(comp.partition_) {} // Compares two iterators based on their input labels. bool operator()(const ArcIterator<Fst<RevArc>> *x, const ArcIterator<Fst<RevArc>> *y) const { const auto &xarc = x->Value(); const auto &yarc = y->Value(); return xarc.ilabel > yarc.ilabel; } private: const Partition<StateId> &partition_; }; using ArcIterQueue = std::priority_queue<ArcIterator<Fst<RevArc>> *, std::vector<ArcIterator<Fst<RevArc>> *>, ArcIterCompare>; private: // Prepartitions the space into equivalence classes. We ensure that final and // non-final states always go into different equivalence classes, and we use // class StateILabelHasher to make sure that most of the time, states with // different sets of ilabels on arcs leaving them, go to different partitions. // Note: for the O(n) guarantees we don't rely on the goodness of this // hashing function---it just provides a bonus speedup. void PrePartition(const ExpandedFst<Arc> &fst) { VLOG(5) << "PrePartition"; StateId next_class = 0; auto num_states = fst.NumStates(); // Allocates a temporary vector to store the initial class mappings, so that // we can allocate the classes all at once. std::vector<StateId> state_to_initial_class(num_states); { // We maintain two maps from hash-value to class---one for final states // (final-prob == One()) and one for non-final states // (final-prob == Zero()). We are processing unweighted acceptors, so the // are the only two possible values. using HashToClassMap = std::unordered_map<size_t, StateId>; HashToClassMap hash_to_class_nonfinal; HashToClassMap hash_to_class_final; StateILabelHasher hasher(fst); for (StateId s = 0; s < num_states; ++s) { size_t hash = hasher(s); HashToClassMap &this_map = (fst.Final(s) != Weight::Zero() ? hash_to_class_final : hash_to_class_nonfinal); // Avoids two map lookups by using 'insert' instead of 'find'. auto p = this_map.insert(std::make_pair(hash, next_class)); state_to_initial_class[s] = p.second ? next_class++ : p.first->second; } // Lets the unordered_maps go out of scope before we allocate the classes, // to reduce the maximum amount of memory used. } P_.AllocateClasses(next_class); for (StateId s = 0; s < num_states; ++s) { P_.Add(s, state_to_initial_class[s]); } for (StateId c = 0; c < next_class; ++c) L_.Enqueue(c); VLOG(5) << "Initial Partition: " << P_.NumClasses(); } // Creates inverse transition Tr_ = rev(fst), loops over states in FST and // splits on final, creating two blocks in the partition corresponding to // final, non-final. void Initialize(const ExpandedFst<Arc> &fst) { // Constructs Tr. Reverse(fst, &Tr_); ILabelCompare<RevArc> ilabel_comp; ArcSort(&Tr_, ilabel_comp); // Tells the partition how many elements to allocate. The first state in // Tr_ is super-final state. P_.Initialize(Tr_.NumStates() - 1); // Prepares initial partition. PrePartition(fst); // Allocates arc iterator queue. ArcIterCompare comp(P_); aiter_queue_.reset(new ArcIterQueue(comp)); } // Partitions all classes with destination C. void Split(ClassId C) { // Prepares priority queue: opens arc iterator for each state in C, and // inserts into priority queue. for (PartitionIterator<StateId> siter(P_, C); !siter.Done(); siter.Next()) { StateId s = siter.Value(); if (Tr_.NumArcs(s + 1)) { aiter_queue_->push(new ArcIterator<Fst<RevArc>>(Tr_, s + 1)); } } // Now pops arc iterator from queue, splits entering equivalence class, and // re-inserts updated iterator into queue. Label prev_label = -1; while (!aiter_queue_->empty()) { std::unique_ptr<ArcIterator<Fst<RevArc>>> aiter(aiter_queue_->top()); aiter_queue_->pop(); if (aiter->Done()) continue; const auto &arc = aiter->Value(); auto from_state = aiter->Value().nextstate - 1; auto from_label = arc.ilabel; if (prev_label != from_label) P_.FinalizeSplit(&L_); auto from_class = P_.ClassId(from_state); if (P_.ClassSize(from_class) > 1) P_.SplitOn(from_state); prev_label = from_label; aiter->Next(); if (!aiter->Done()) aiter_queue_->push(aiter.release()); } P_.FinalizeSplit(&L_); } // Main loop for Hopcroft minimization. void Compute(const Fst<Arc> &fst) { // Processes active classes (FIFO, or FILO). while (!L_.Empty()) { const auto C = L_.Head(); L_.Dequeue(); Split(C); // Splits on C, all labels in C. } } private: // Partioning of states into equivalence classes. Partition<StateId> P_; // Set of active classes to be processed in partition P. Queue L_; // Reverses transition function. VectorFst<RevArc> Tr_; // Priority queue of open arc iterators for all states in the splitter // equivalence class. std::unique_ptr<ArcIterQueue> aiter_queue_; }; // Computes equivalence classes for acyclic FST. // // Complexity: // // O(E) // // where E is the number of arcs. // // For more information, see: // // Revuz, D. 1992. Minimization of acyclic deterministic automata in linear // time. Theoretical Computer Science 92(1): 181-189. template <class Arc> class AcyclicMinimizer { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using ClassId = typename Arc::StateId; using Weight = typename Arc::Weight; explicit AcyclicMinimizer(const ExpandedFst<Arc> &fst) { Initialize(fst); Refine(fst); } const Partition<StateId> &GetPartition() { return partition_; } private: // DFS visitor to compute the height (distance) to final state. class HeightVisitor { public: HeightVisitor() : max_height_(0), num_states_(0) {} // Invoked before DFS visit. void InitVisit(const Fst<Arc> &fst) {} // Invoked when state is discovered (2nd arg is DFS tree root). bool InitState(StateId s, StateId root) { // Extends height array and initialize height (distance) to 0. for (StateId i = height_.size(); i <= s; ++i) height_.push_back(-1); if (s >= num_states_) num_states_ = s + 1; return true; } // Invoked when tree arc examined (to undiscovered state). bool TreeArc(StateId s, const Arc &arc) { return true; } // Invoked when back arc examined (to unfinished state). bool BackArc(StateId s, const Arc &arc) { return true; } // Invoked when forward or cross arc examined (to finished state). bool ForwardOrCrossArc(StateId s, const Arc &arc) { if (height_[arc.nextstate] + 1 > height_[s]) { height_[s] = height_[arc.nextstate] + 1; } return true; } // Invoked when state finished (parent is kNoStateId for tree root). void FinishState(StateId s, StateId parent, const Arc *parent_arc) { if (height_[s] == -1) height_[s] = 0; const auto h = height_[s] + 1; if (parent >= 0) { if (h > height_[parent]) height_[parent] = h; if (h > max_height_) max_height_ = h; } } // Invoked after DFS visit. void FinishVisit() {} size_t max_height() const { return max_height_; } const std::vector<StateId> &height() const { return height_; } size_t num_states() const { return num_states_; } private: std::vector<StateId> height_; size_t max_height_; size_t num_states_; }; private: // Cluster states according to height (distance to final state) void Initialize(const Fst<Arc> &fst) { // Computes height (distance to final state). HeightVisitor hvisitor; DfsVisit(fst, &hvisitor); // Creates initial partition based on height. partition_.Initialize(hvisitor.num_states()); partition_.AllocateClasses(hvisitor.max_height() + 1); const auto &hstates = hvisitor.height(); for (StateId s = 0; s < hstates.size(); ++s) partition_.Add(s, hstates[s]); } // Refines states based on arc sort (out degree, arc equivalence). void Refine(const Fst<Arc> &fst) { using EquivalenceMap = std::map<StateId, StateId, StateComparator<Arc>>; StateComparator<Arc> comp(fst, partition_); // Starts with tail (height = 0). auto height = partition_.NumClasses(); for (StateId h = 0; h < height; ++h) { EquivalenceMap equiv_classes(comp); // Sorts states within equivalence class. PartitionIterator<StateId> siter(partition_, h); equiv_classes[siter.Value()] = h; for (siter.Next(); !siter.Done(); siter.Next()) { auto insert_result = equiv_classes.insert(std::make_pair(siter.Value(), kNoStateId)); if (insert_result.second) { insert_result.first->second = partition_.AddClass(); } } // Creates refined partition. for (siter.Reset(); !siter.Done();) { const auto s = siter.Value(); const auto old_class = partition_.ClassId(s); const auto new_class = equiv_classes[s]; // A move operation can invalidate the iterator, so we first update // the iterator to the next element before we move the current element // out of the list. siter.Next(); if (old_class != new_class) partition_.Move(s, new_class); } } } private: Partition<StateId> partition_; }; // Given a partition and a Mutable FST, merges states of Fst in place (i.e., // destructively). Merging works by taking the first state in a class of the // partition to be the representative state for the class. Each arc is then // reconnected to this state. All states in the class are merged by adding // their arcs to the representative state. template <class Arc> void MergeStates(const Partition<typename Arc::StateId> &partition, MutableFst<Arc> *fst) { using StateId = typename Arc::StateId; std::vector<StateId> state_map(partition.NumClasses()); for (StateId i = 0; i < partition.NumClasses(); ++i) { PartitionIterator<StateId> siter(partition, i); state_map[i] = siter.Value(); // First state in partition. } // Relabels destination states. for (StateId c = 0; c < partition.NumClasses(); ++c) { for (PartitionIterator<StateId> siter(partition, c); !siter.Done(); siter.Next()) { const auto s = siter.Value(); for (MutableArcIterator<MutableFst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate = state_map[partition.ClassId(arc.nextstate)]; if (s == state_map[c]) { // For the first state, just sets destination. aiter.SetValue(arc); } else { fst->AddArc(state_map[c], arc); } } } } fst->SetStart(state_map[partition.ClassId(fst->Start())]); Connect(fst); } template <class Arc> void AcceptorMinimize(MutableFst<Arc> *fst, bool allow_acyclic_minimization = true) { if (!(fst->Properties(kAcceptor | kUnweighted, true) == (kAcceptor | kUnweighted))) { FSTERROR() << "FST is not an unweighted acceptor"; fst->SetProperties(kError, kError); return; } // Connects FST before minimization, handles disconnected states. Connect(fst); if (fst->NumStates() == 0) return; if (allow_acyclic_minimization && fst->Properties(kAcyclic, true)) { // Acyclic minimization (Revuz). VLOG(2) << "Acyclic minimization"; ArcSort(fst, ILabelCompare<Arc>()); AcyclicMinimizer<Arc> minimizer(*fst); MergeStates(minimizer.GetPartition(), fst); } else { // Either the FST has cycles, or it's generated from non-deterministic input // (which the Revuz algorithm can't handle), so use the cyclic minimization // algorithm of Hopcroft. VLOG(2) << "Cyclic minimization"; CyclicMinimizer<Arc, LifoQueue<typename Arc::StateId>> minimizer(*fst); MergeStates(minimizer.GetPartition(), fst); } // Merges in appropriate semiring ArcUniqueMapper<Arc> mapper(*fst); StateMap(fst, mapper); } } // namespace internal // In place minimization of deterministic weighted automata and transducers, // and also non-deterministic ones if they use an idempotent semiring. // For transducers, if the 'sfst' argument is not null, the algorithm // produces a compact factorization of the minimal transducer. // // In the acyclic deterministic case, we use an algorithm from Revuz that is // linear in the number of arcs (edges) in the machine. // // In the cyclic or non-deterministic case, we use the classical Hopcroft // minimization (which was presented for the deterministic case but which // also works for non-deterministic FSTs); this has complexity O(e log v). // template <class Arc> void Minimize(MutableFst<Arc> *fst, MutableFst<Arc> *sfst = nullptr, float delta = kShortestDelta, bool allow_nondet = false) { using Weight = typename Arc::Weight; const auto props = fst->Properties( kAcceptor | kIDeterministic | kWeighted | kUnweighted, true); bool allow_acyclic_minimization; if (props & kIDeterministic) { allow_acyclic_minimization = true; } else { // Our approach to minimization of non-deterministic FSTs will only work in // idempotent semirings---for non-deterministic inputs, a state could have // multiple transitions to states that will get merged, and we'd have to // sum their weights. The algorithm doesn't handle that. if (!(Weight::Properties() & kIdempotent)) { fst->SetProperties(kError, kError); FSTERROR() << "Cannot minimize a non-deterministic FST over a " "non-idempotent semiring"; return; } else if (!allow_nondet) { fst->SetProperties(kError, kError); FSTERROR() << "Refusing to minimize a non-deterministic FST with " << "allow_nondet = false"; return; } // The Revuz algorithm won't work for nondeterministic inputs, so if the // input is nondeterministic, we'll have to pass a bool saying not to use // that algorithm. We check at this level rather than in AcceptorMinimize(), // because it's possible that the FST at this level could be deterministic, // but a harmless type of non-determinism could be introduced by Encode() // (thanks to kEncodeWeights, if the FST has epsilons and has a final // weight with weights equal to some epsilon arc.) allow_acyclic_minimization = false; } if (!(props & kAcceptor)) { // Weighted transducer. VectorFst<GallicArc<Arc, GALLIC_LEFT>> gfst; ArcMap(*fst, &gfst, ToGallicMapper<Arc, GALLIC_LEFT>()); fst->DeleteStates(); gfst.SetProperties(kAcceptor, kAcceptor); Push(&gfst, REWEIGHT_TO_INITIAL, delta); ArcMap(&gfst, QuantizeMapper<GallicArc<Arc, GALLIC_LEFT>>(delta)); EncodeMapper<GallicArc<Arc, GALLIC_LEFT>> encoder( kEncodeLabels | kEncodeWeights, ENCODE); Encode(&gfst, &encoder); internal::AcceptorMinimize(&gfst, allow_acyclic_minimization); Decode(&gfst, encoder); if (!sfst) { FactorWeightFst<GallicArc<Arc, GALLIC_LEFT>, GallicFactor<typename Arc::Label, Weight, GALLIC_LEFT>> fwfst(gfst); std::unique_ptr<SymbolTable> osyms( fst->OutputSymbols() ? fst->OutputSymbols()->Copy() : nullptr); ArcMap(fwfst, fst, FromGallicMapper<Arc, GALLIC_LEFT>()); fst->SetOutputSymbols(osyms.get()); } else { sfst->SetOutputSymbols(fst->OutputSymbols()); GallicToNewSymbolsMapper<Arc, GALLIC_LEFT> mapper(sfst); ArcMap(gfst, fst, &mapper); fst->SetOutputSymbols(sfst->InputSymbols()); } } else if (props & kWeighted) { // Weighted acceptor. Push(fst, REWEIGHT_TO_INITIAL, delta); ArcMap(fst, QuantizeMapper<Arc>(delta)); EncodeMapper<Arc> encoder(kEncodeLabels | kEncodeWeights, ENCODE); Encode(fst, &encoder); internal::AcceptorMinimize(fst, allow_acyclic_minimization); Decode(fst, encoder); } else { // Unweighted acceptor. internal::AcceptorMinimize(fst, allow_acyclic_minimization); } } } // namespace fst #endif // FST_MINIMIZE_H_ |