Blame view
tools/openfst-1.6.7/include/fst/partition.h
12.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes to create a partition of states. #ifndef FST_PARTITION_H_ #define FST_PARTITION_H_ #include <algorithm> #include <vector> #include <fst/queue.h> namespace fst { namespace internal { template <typename T> class PartitionIterator; // Defines a partitioning of elements, used to represent equivalence classes // for FST operations like minimization. T must be a signed integer type. // // The elements are numbered from 0 to num_elements - 1. // Initialize(num_elements) sets up the class for a given number of elements. // We maintain a partition of these elements into classes. The classes are also // numbered from zero; you can add a class with AddClass(), or add them in bulk // with AllocateClasses(num_classes). Initially the elements are not assigned // to any class; you set up the initial mapping from elements to classes by // calling Add(element_id, class_id). You can also move an element to a // different class by calling Move(element_id, class_id). // // We also support a rather specialized interface that allows you to efficiently // split classes in the Hopcroft minimization algorithm. This maintains a // binary partition of each class. Let's call these, rather arbitrarily, the // 'yes' subset and the 'no' subset of each class, and assume that by default, // each element of a class is in its 'no' subset. When one calls // SplitOn(element_id), element_id is moved to the 'yes' subset of its class. // (If it was already in the 'yes' set, it just stays there). The aim is to // enable (later) splitting the class in two in time no greater than the time // already spent calling SplitOn() for that class. We keep a list of the classes // which have nonempty 'yes' sets, as visited_classes_. When one calls // FinalizeSplit(Queue *l), for each class in visited_classes_ whose 'yes' // and 'no' sets are both nonempty, it will create a new class consisting of // the smaller of the two subsets (and this class will be added to the queue), // and the old class will now be the larger of the two subsets. This call also // resets all the yes/no partitions so that everything is in the 'no' subsets. // // One cannot use the Move() function if SplitOn() has been called without // a subsequent call to FinalizeSplit() template <typename T> class Partition { public: Partition() {} explicit Partition(T num_elements) { Initialize(num_elements); } // Creates an empty partition for num_elements. This means that the elements // are not assigned to a class (i.e class_index = -1); you should set up the // number of classes using AllocateClasses() or AddClass(), and allocate each // element to a class by calling Add(element, class_id). void Initialize(size_t num_elements) { elements_.resize(num_elements); classes_.reserve(num_elements); classes_.clear(); yes_counter_ = 1; } // Adds a class; returns new number of classes. T AddClass() { auto num_classes = classes_.size(); classes_.resize(num_classes + 1); return num_classes; } // Adds 'num_classes' new (empty) classes. void AllocateClasses(T num_classes) { classes_.resize(classes_.size() + num_classes); } // Adds element_id to class_id. element_id should already have been allocated // by calling Initialize(num_elements)---or the constructor taking // num_elements---with num_elements > element_id. element_id must not // currently be a member of any class; once elements have been added to a // class, use the Move() method to move them from one class to another. void Add(T element_id, T class_id) { auto &this_element = elements_[element_id]; auto &this_class = classes_[class_id]; ++this_class.size; // Adds the element to the 'no' subset of the class. auto no_head = this_class.no_head; if (no_head >= 0) elements_[no_head].prev_element = element_id; this_class.no_head = element_id; this_element.class_id = class_id; // Adds to the 'no' subset of the class. this_element.yes = 0; this_element.next_element = no_head; this_element.prev_element = -1; } // Moves element_id from 'no' subset of its current class to 'no' subset of // class class_id. This may not work correctly if you have called SplitOn() // [for any element] and haven't subsequently called FinalizeSplit(). void Move(T element_id, T class_id) { auto elements = &(elements_[0]); auto &element = elements[element_id]; auto &old_class = classes_[element.class_id]; --old_class.size; // Excises the element from the 'no' list of its old class, where it is // assumed to be. if (element.prev_element >= 0) { elements[element.prev_element].next_element = element.next_element; } else { old_class.no_head = element.next_element; } if (element.next_element >= 0) { elements[element.next_element].prev_element = element.prev_element; } // Adds to new class. Add(element_id, class_id); } // Moves element_id to the 'yes' subset of its class if it was in the 'no' // subset, and marks the class as having been visited. void SplitOn(T element_id) { auto elements = &(elements_[0]); auto &element = elements[element_id]; if (element.yes == yes_counter_) { return; // Already in the 'yes' set; nothing to do. } auto class_id = element.class_id; auto &this_class = classes_[class_id]; // Excises the element from the 'no' list of its class. if (element.prev_element >= 0) { elements[element.prev_element].next_element = element.next_element; } else { this_class.no_head = element.next_element; } if (element.next_element >= 0) { elements[element.next_element].prev_element = element.prev_element; } // Adds the element to the 'yes' list. if (this_class.yes_head >= 0) { elements[this_class.yes_head].prev_element = element_id; } else { visited_classes_.push_back(class_id); } element.yes = yes_counter_; element.next_element = this_class.yes_head; element.prev_element = -1; this_class.yes_head = element_id; this_class.yes_size++; } // This should be called after one has possibly called SplitOn for one or more // elements, thus moving those elements to the 'yes' subset for their class. // For each class that has a nontrivial split (i.e., it's not the case that // all members are in the 'yes' or 'no' subset), this function creates a new // class containing the smaller of the two subsets of elements, leaving the // larger group of elements in the old class. The identifier of the new class // will be added to the queue provided as the pointer L. This method then // moves all elements to the 'no' subset of their class. template <class Queue> void FinalizeSplit(Queue *queue) { for (const auto &visited_class : visited_classes_) { const auto new_class = SplitRefine(visited_class); if (new_class != -1 && queue) queue->Enqueue(new_class); } visited_classes_.clear(); // Incrementation sets all the 'yes' members of the elements to false. ++yes_counter_; } const T ClassId(T element_id) const { return elements_[element_id].class_id; } const size_t ClassSize(T class_id) const { return classes_[class_id].size; } const T NumClasses() const { return classes_.size(); } private: friend class PartitionIterator<T>; // Information about a given element. struct Element { T class_id; // Class ID of this element. T yes; // This is to be interpreted as a bool, true if it's in the // 'yes' set of this class. The interpretation as bool is // (yes == yes_counter_ ? true : false). T next_element; // Next element in the 'no' list or 'yes' list of this // class, whichever of the two we belong to (think of // this as the 'next' in a doubly-linked list, although // it is an index into the elements array). Negative // values corresponds to null. T prev_element; // Previous element in the 'no' or 'yes' doubly linked // list. Negative values corresponds to null. }; // Information about a given class. struct Class { Class() : size(0), yes_size(0), no_head(-1), yes_head(-1) {} T size; // Total number of elements in this class ('no' plus 'yes' // subsets). T yes_size; // Total number of elements of 'yes' subset of this class. T no_head; // Index of head element of doubly-linked list in 'no' subset. // Everything is in the 'no' subset until you call SplitOn(). // -1 means no element. T yes_head; // Index of head element of doubly-linked list in 'yes' subset. // -1 means no element. }; // This method, called from FinalizeSplit(), checks whether a class has to // be split (a class will be split only if its 'yes' and 'no' subsets are // both nonempty, but one can assume that since this function was called, the // 'yes' subset is nonempty). It splits by taking the smaller subset and // making it a new class, and leaving the larger subset of elements in the // 'no' subset of the old class. It returns the new class if created, or -1 // if none was created. T SplitRefine(T class_id) { auto yes_size = classes_[class_id].yes_size; auto size = classes_[class_id].size; auto no_size = size - yes_size; if (no_size == 0) { // All members are in the 'yes' subset, so we don't have to create a new // class, just move them all to the 'no' subset. classes_[class_id].no_head = classes_[class_id].yes_head; classes_[class_id].yes_head = -1; classes_[class_id].yes_size = 0; return -1; } else { auto new_class_id = classes_.size(); classes_.resize(classes_.size() + 1); auto &old_class = classes_[class_id]; auto &new_class = classes_[new_class_id]; // The new_class will have the values from the constructor. if (no_size < yes_size) { // Moves the 'no' subset to new class ('no' subset). new_class.no_head = old_class.no_head; new_class.size = no_size; // And makes the 'yes' subset of the old class ('no' subset). old_class.no_head = old_class.yes_head; old_class.yes_head = -1; old_class.size = yes_size; old_class.yes_size = 0; } else { // Moves the 'yes' subset to the new class (to the 'no' subset) new_class.size = yes_size; new_class.no_head = old_class.yes_head; // Retains only the 'no' subset in the old class. old_class.size = no_size; old_class.yes_size = 0; old_class.yes_head = -1; } auto elements = &(elements_[0]); // Updates the 'class_id' of all the elements we moved. for (auto e = new_class.no_head; e >= 0; e = elements[e].next_element) { elements[e].class_id = new_class_id; } return new_class_id; } } // elements_[i] contains all info about the i'th element. std::vector<Element> elements_; // classes_[i] contains all info about the i'th class. std::vector<Class> classes_; // Set of visited classes to be used in split refine. std::vector<T> visited_classes_; // yes_counter_ is used in interpreting the 'yes' members of class Element. // If element.yes == yes_counter_, we interpret that element as being in the // 'yes' subset of its class. This allows us to, in effect, set all those // bools to false at a stroke by incrementing yes_counter_. T yes_counter_; }; // Iterates over members of the 'no' subset of a class in a partition. (When // this is used, everything is in the 'no' subset). template <typename T> class PartitionIterator { public: using Element = typename Partition<T>::Element; PartitionIterator(const Partition<T> &partition, T class_id) : partition_(partition), element_id_(partition_.classes_[class_id].no_head), class_id_(class_id) {} bool Done() { return element_id_ < 0; } const T Value() { return element_id_; } void Next() { element_id_ = partition_.elements_[element_id_].next_element; } void Reset() { element_id_ = partition_.classes_[class_id_].no_head; } private: const Partition<T> &partition_; T element_id_; T class_id_; }; } // namespace internal } // namespace fst #endif // FST_PARTITION_H_ |