Blame view
tools/openfst-1.6.7/include/fst/power-weight.h
4.63 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Cartesian power weight semiring operation definitions. #ifndef FST_POWER_WEIGHT_H_ #define FST_POWER_WEIGHT_H_ #include <string> #include <fst/tuple-weight.h> #include <fst/weight.h> namespace fst { // Cartesian power semiring: W ^ n // // Forms: // - a left semimodule when W is a left semiring, // - a right semimodule when W is a right semiring, // - a bisemimodule when W is a semiring, // the free semimodule of rank n over W // The Times operation is overloaded to provide the left and right scalar // products. template <class W, size_t n> class PowerWeight : public TupleWeight<W, n> { public: using ReverseWeight = PowerWeight<typename W::ReverseWeight, n>; PowerWeight() {} explicit PowerWeight(const TupleWeight<W, n> &weight) : TupleWeight<W, n>(weight) {} template <class Iterator> PowerWeight(Iterator begin, Iterator end) : TupleWeight<W, n>(begin, end) {} // Initialize component `index` to `weight`; initialize all other components // to `default_weight` PowerWeight(size_t index, const W &weight, const W &default_weight = W::Zero()) : TupleWeight<W, n>(index, weight, default_weight) {} static const PowerWeight &Zero() { static const PowerWeight zero(TupleWeight<W, n>::Zero()); return zero; } static const PowerWeight &One() { static const PowerWeight one(TupleWeight<W, n>::One()); return one; } static const PowerWeight &NoWeight() { static const PowerWeight no_weight(TupleWeight<W, n>::NoWeight()); return no_weight; } static const string &Type() { static const string *const type = new string(W::Type() + "_^" + std::to_string(n)); return *type; } static constexpr uint64 Properties() { return W::Properties() & (kLeftSemiring | kRightSemiring | kCommutative | kIdempotent); } PowerWeight Quantize(float delta = kDelta) const { return PowerWeight(TupleWeight<W, n>::Quantize(delta)); } ReverseWeight Reverse() const { return ReverseWeight(TupleWeight<W, n>::Reverse()); } }; // Semiring plus operation. template <class W, size_t n> inline PowerWeight<W, n> Plus(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Plus(w1.Value(i), w2.Value(i))); } return result; } // Semiring times operation. template <class W, size_t n> inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Times(w1.Value(i), w2.Value(i))); } return result; } // Semiring divide operation. template <class W, size_t n> inline PowerWeight<W, n> Divide(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2, DivideType type = DIVIDE_ANY) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Divide(w1.Value(i), w2.Value(i), type)); } return result; } // Semimodule left scalar product. template <class W, size_t n> inline PowerWeight<W, n> Times(const W &scalar, const PowerWeight<W, n> &weight) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Times(scalar, weight.Value(i))); } return result; } // Semimodule right scalar product. template <class W, size_t n> inline PowerWeight<W, n> Times(const PowerWeight<W, n> &weight, const W &scalar) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Times(weight.Value(i), scalar)); } return result; } // Semimodule dot product. template <class W, size_t n> inline W DotProduct(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) { W result(W::Zero()); for (size_t i = 0; i < n; ++i) { result = Plus(result, Times(w1.Value(i), w2.Value(i))); } return result; } // This function object generates weights over the Cartesian power of rank // n over the underlying weight. This is intended primarily for testing. template <class W, size_t n> class WeightGenerate<PowerWeight<W, n>> { public: using Weight = PowerWeight<W, n>; using Generate = WeightGenerate<W>; explicit WeightGenerate(bool allow_zero = true) : generate_(allow_zero) {} Weight operator()() const { Weight result; for (size_t i = 0; i < n; ++i) result.SetValue(i, generate_()); return result; } private: Generate generate_; }; } // namespace fst #endif // FST_POWER_WEIGHT_H_ |